Avec cedram.org
Confluentes Mathematici
Rechercher un article
Recherche sur le site
Table des matières de ce fascicule | Article précédent | Article suivant
Adrien Deloro
Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions
(Variations on a Theorem of Timmesfeld – I. Quadratic Actions)
Confluentes Mathematici, 5 no. 2 (2013), p. 25-46
Article PDF
Class. Math.: 20G05, 20G15, 17B10, 17B45

Résumé - Abstract

We classify quadratic $\operatorname{SL}_2(\mathbb{K})$- and $\mathfrak{sl}_2(\mathbb{K})$-modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.


[1] Andrew Chermak, “Quadratic pairs”, J. Algebra 277 (2004) no. 1, p. 36-72 Article |  MR 2059620
[2] George Glauberman, “A sufficient condition for $p$ stability”, Proc. London Math. Soc. (3) 25 (1972), p. 253-287
[3] Chat-Yin Ho, “On the quadratic pairs”, J. Algebra 43 (1976) no. 1, p. 338-358
[4] Alexander Arcadievitch Premet & Irina Dmitrievna Suprunenko, “Quadratic modules for Chevalley groups over fields of odd characteristics”, Math. Nachr. 110 (1983), p. 65-96 Article
[5] Stephen D. Smith, “Quadratic action and the natural module for ${\rm SL}_2(k)$”, J. Algebra 127 (1989) no. 1, p. 155-162
[6] John G. Thompson, Quadratic pairs, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, 1971, p. 375–376
[7] Franz Georg Timmesfeld, “Groups generated by $k$-transvections”, Invent. Math. 100 (1990) no. 1, p. 167-206
[8] Franz Georg Timmesfeld, “Abstract root subgroups and quadratic action”, Adv. Math. 142 (1999) no. 1, p. 1-150, With an appendix by A. E. Zalesskii Article
[9] Franz Georg Timmesfeld, Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics 95, Birkhäuser Verlag, Basel, 2001
eISSN : 1793-7434