Avec cedram.org
Confluentes Mathematici
Rechercher un article
Recherche sur le site
Table des matières de ce fascicule | Article précédent
Bruno Sévennec
Octonion multiplication and Heawood’s map
Confluentes Mathematici, 5 no. 2 (2013), p. 79-85
Article PDF
Class. Math.: 17A35, 05C10, 05C25

Résumé - Abstract

In this note, the octonion multiplication table is recovered from a regular tesselation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map.

Bibliographie

[1] J. C. Baez. The octonions. Bull. Amer. Math. Soc., 39:145–205, 2002.
[2] B. Bollobas. Modern graph theory., Graduate Texts in Mathematics, Vol. 184. Springer-Verlag, New York-Berlin, 1998.  MR 1633290
[3] E. Brown and N. Loehr. Why is PSL(2,7) $\simeq $ GL(3,2)?. Amer. Math. Monthly 116:727–731, 2009.
[4] J. H. Conway and D. A. Smith. Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. AK Peters, 2003.  MR 1957212
[5] R. L. Griess Jr. Sporadic groups, code loops and nonvanishing cohomology. J. Pure Appl. Algebra, 44:191–214, 1987.
[6] P. J. Heawood. Map colour theorem. Quart. J. Pure Appl. Math., 24:332–338, 1980.
[7] D. R. Hughes and F. C. Piper. Projective planes, Graduate Texts in Mathematics, Vol. 6. Springer-Verlag, New York-Berlin, 1973.  MR 333959
[8] J. H. van Lint and R. M. Wilson. A course in combinatorics, Second edition. Cambridge University Press, Cambridge, 2001.
[9] L. Manivel. Configurations of lines and models of Lie algebras. J. Algebra 304:457–486, 2006.
eISSN : 1793-7434

haut