Avec cedram.org
Confluentes Mathematici
Rechercher un article
Recherche sur le site
Table des matières de ce fascicule | Article précédent | Article suivant
Ayman Kachmar; Pierig Keraval; Nicolas Raymond
Weyl formulae for the Robin Laplacian in the semiclassical limit
Confluentes Mathematici, 8 no. 2 (2016), p. 39-57, doi: 10.5802/cml.32
Article PDF
Class. Math.: 35P15, 35P20
Mots clés: Robin Laplacian, Born-Oppenheimer approximation, Weyl formulae

Résumé - Abstract

This paper is devoted to establish semiclassical Weyl formulae for the Robin Laplacian on smooth domains in any dimension. Theirs proofs are reminiscent of the Born-Oppenheimer method.

Bibliographie

[1] Anne Balazard-Konlein, “Asymptotique semi-classique du spectre pour des opérateurs à symbole opératoriel”, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) no. 20, p. 903-906
[2] V. Bonnaillie-Noël, F. Hérau & N. Raymond, “Magnetic WKB Constructions”, Arch. Ration. Mech. Anal. 221 (2016) no. 2, p. 817-891 Article
[3] Yves Colin de Verdière, “L’asymptotique de Weyl pour les bouteilles magnétiques”, Comm. Math. Phys. 105 (1986) no. 2, p. 327-335
[4] H. L. Cycon, R. G. Froese, W. Kirsch & B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987
[5] V. Duchêne & N. Raymond, “Spectral asymptotics of a broken $\delta $-interaction”, J. Phys. A 47 (2014) no. 15 Article
[6] Pavel Exner, Alexander Minakov & Leonid Parnovski, “Asymptotic eigenvalue estimates for a Robin problem with a large parameter”, Port. Math. 71 (2014) no. 2, p. 141-156 Article
[7] B. Helffer & A. Kachmar, “Eigenvalues for the Robin Laplacian in domains with variable curvature”, Trans. Amer. Math. Soc. 369 (2017) no. 5, p. 3253-3287
[8] B. Helffer, A. Kachmar & N. Raymond, “Tunneling for the Robin Laplacian in smooth planar domains”, Contemp. Math. 19 (2017) no. 1
[9] Bernard Helffer, Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics 1336, Springer-Verlag, Berlin, 1988
[10] Thierry Jecko, “On the mathematical treatment of the Born-Oppenheimer approximation”, J. Math. Phys. 55 (2014) no. 5 Article
[11] M. Klein, A. Martinez, R. Seiler & X. P. Wang, “On the Born-Oppenheimer expansion for polyatomic molecules”, Comm. Math. Phys. 143 (1992) no. 3, p. 607-639
[12] David Krejčiřík & Nicolas Raymond, “Magnetic Effects in Curved Quantum Waveguides”, Ann. Henri Poincaré 15 (2014) no. 10, p. 1993-2024 Article
[13] Jonas Lampart & Stefan Teufel, The adiabatic limit of the Laplacian on thin fibre bundles, Microlocal methods in mathematical physics and global analysis, Trends Math., Birkhäuser/Springer, Basel, 2013, p. 33–36 Article |  MR 3307793
[14] Michael Levitin & Leonid Parnovski, “On the principal eigenvalue of a Robin problem with a large parameter”, Math. Nachr. 281 (2008) no. 2, p. 272-281 Article
[15] André Martinez & Bekkai Messirdi, “Resonances of diatomic molecules in the Born-Oppenheimer approximation”, Comm. Partial Differential Equations 19 (1994) no. 7-8, p. 1139-1162 Article
[16] André Martinez & Vania Sordoni, “A general reduction scheme for the time-dependent Born-Oppenheimer approximation”, C. R. Math. Acad. Sci. Paris 334 (2002) no. 3, p. 185-188 Article
[17] Abderemane Morame & Françoise Truc, “Remarks on the spectrum of the Neumann problem with magnetic field in the half-space”, J. Math. Phys. 46 (2005) no. 1 Article
[18] Gianluca Panati, Herbert Spohn & Stefan Teufel, “Space-adiabatic perturbation theory”, Adv. Theor. Math. Phys. 7 (2003) no. 1, p. 145-204
[19] Gianluca Panati, Herbert Spohn & Stefan Teufel, “The time-dependent Born-Oppenheimer approximation”, M2AN Math. Model. Numer. Anal. 41 (2007) no. 2, p. 297-314 Article
[20] K. Pankrashkin & N. Popoff, “An effective Hamiltonian for the eigenvalues asymptotics of a Robin Laplacian with a large parameter”, J. Math. Pures Appl. 106 (2016), p. 615-650
[21] N. Raymond, Bound States of the Magnetic Schrödinger Operator, EMS Tracts 27, Europ. Math. Soc., 2017
[22] Stefan Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics 1821, Springer-Verlag, Berlin, 2003 Article
[23] Jakob Wachsmuth & Stefan Teufel, “Effective Hamiltonians for constrained quantum systems”, Mem. Amer. Math. Soc. 230 (2014) no. 1083
[24] Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, American Mathematical Society, Providence, RI, 2012
eISSN : 1793-7434

haut