Avec cedram.org
Confluentes Mathematici
Rechercher un article
Recherche sur le site
Table des matières de ce fascicule | Article précédent | Article suivant
Alexandre Martin
On the Limiting absorption principle for a new class of Schrödinger Hamiltonians
Confluentes Mathematici, 10 no. 1 (2018), p. 63-94, doi: 10.5802/cml.46
Article PDF
Class. Math.: 35J10, 35P25, 35Q40, 35S05, 47B15, 47B25, 47F05
Mots clés: Schrödinger operators, Mourre theory, Limiting Absorption Principle

Résumé - Abstract

We prove the limiting absorption principle and discuss the continuity properties of the boundary values of the resolvent for a class of form bounded perturbations of the Euclidean Laplacian $\Delta $ that covers both short and long range potentials with an essentially optimal behaviour at infinity. For this, we give an extension of Nakamura’s results (see [16]).

Bibliographie

[1] W. Amrein, A. Boutet de Monvel & V. Georgescu, $C_0$-groups, commutator methods, and spectral theory of $N$-body Hamiltonians, Birkhäuser Verlag, 1996
[2] M. Ben-Artzi & A. Devinatz, “Spectral and scattering theory for the adiabatic oscillator and related potentials”, Journal of Mathematical Physics 20 (1979) no. 4, p. 594-607
[3] A. Boutet de Monvel & V. Georgescu, Boundary Values of the Resolvent of a Self-Adjoint Operator: Higher Order Estimates, Algebraic and Geometric Methods in Mathematical Physics, 1993
[4] A. Boutet de Monvel, V. Georgescu & J. Sahbani, “Higher Order Estimates in the Conjugate Operator Theory”, see https://www.ma.utexas.edu/mp_arc/index-97.html, 1997
[5] M. Combescure, “Spectral and scattering theory for a class of strongly oscillating potentials”, Communications in Mathematical Physics 73 (1980) no. 1, p. 43-62
[6] M. Combescure & J Ginibre, Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials, in Annales de l’IHP Physique théorique, 1976, p. 17-30
[7] H.L. Cycon, R.G. Froese, W. Kirsch & B. Simon, Schrödinger operators, with applications to quantum mechanics and global geometry, Springer, 2008, 2nd corrected printing
[8] A. Devinatz, R. Moeckel & P. Rejto, “A limiting absorption principle for Schrödinger operators with Von Neumann-Wigner type potentials”, Integral Equations and Operator Theory 14 (1991) no. 1, p. 13-68
[9] A. Devinatz & P. Rejto, “A limiting absorption principle for Schrödinger operators with oscillating potentials. Part I”, Journal of Differential Equations 49 (1983) no. 1, p. 29-84
[10] A. Devinatz & P. Rejto, “A limiting absorption principle for Schrödinger operators with oscillating potentials. Part II”, Journal of Differential Equations 49 (1983) no. 1, p. 85-104
[11] V. Georgescu & C. Gérard, “On the Virial Theorem in Quantum Mechanics”, Comm. Math. Phys. (1999)
[12] V. Georgescu & M. Măntoiu, “On the spectral theory of Dirac type Hamiltonians”, J. of Operator Theory 46 (2001), p. 289-321
[13] T. Jecko & A. Mbarek, “Limiting Absorption Principle for Schrödinger Operators with Oscillating Potentials”, Documenta Mathematica 22 (2017), p. 727-776
[14] E. Mourre, “Absence of Singular Continuous Spectrum for Certain Self-Adjoint Operators”, Comm. Math. Phys. 78 (1981), p. 391-408
[15] E. Mourre, “Opérateurs conjugués et propriétés de propagation”, Comm. Math. Phys. 91 (1983), p. 279-300
[16] S. Nakamura, “A remark on the Mourre theory for two body Schrödinger operators”, J. Spectral Theory 4 (2015) no. 3, p. 613-619
[17] C.R. Putnam, “On commutators and Jacobi matrices”, Proc. Amer. Math. Soc. 7 (1956), p. 1026-1030
[18] C.R. Putnam, Commutation properties of Hilbert space operators and related topics, Springer, 1967
[19] M. Reed & B. Simon, Methods of modern mathematical physics: Vol. 1, Functional Analysis, Academic Press, 1970
[20] M. Reed & B. Simon, Methods of modern mathematical physics: Vol. 3, Scattering theory, Academic Press, 1970
[21] P. Rejto & M. Taboada, “A Limiting Absorption Principle for Schrödinger Operators with Generalized Von Neumann–Wigner Potentials I. Construction of Approximate Phase”, Journal of Mathematical Analysis and Applications 208 (1997) no. 1, p. 85-108
[22] P. Rejto & M. Taboada, “A Limiting Absorption Principle for Schrödinger Operators with Generalized Von Neumann–Wigner Potentials II. The Proof”, Journal of Mathematical Analysis and Applications 208 (1997) no. 2, p. 311-336
eISSN : 1793-7434

haut