With cedram.org
Confluentes Mathematici
Search for an article
Search within the site
Table of contents for this issue | Previous article | Next article
Masseye Gaye; Cheikh Lo
Sur l’inexistence d’ensembles minimaux pour le flot horocyclique
(On the non-existence of minimal sets for the horocycle flow)
Confluentes Mathematici, 9 no. 1 (2017), p. 95-104, doi: 10.5802/cml.37
Article PDF
Class. Math.: 37D40, 20H10, 14H55, 30F35
Keywords: surface hyperbolique, ensemble minimal, orbite horocyclique, point limite.

Résumé - Abstract

The topological dynamics of the horocycle flow $h_\mathbb{R}$ on the unitary tangent bundle of a geometrically finite surface $S$ is well known. In particular in this case a $h_\mathbb{R}$-minimal set exists always. When the surface is geometrically infinite, the behaviour of this flow depends on the action of the fundamental group $\pi _1(S)$ of the surface on the boundary of the hyperbolic plane. The aim of this paper is to give a non-existence condition of $h_\mathbb{R}$-minimal sets and use it to construct a family of geometrically infinite surfaces on which the horocyclic flow has no minimal sets.


[1] A. F. Beardon, The geometry of discrete groups, Springer-Verlag, New York, 1983.
[2] F. Dal’Bo, Trajectoires géodésiques et horocycliques, Savoirs Actuels, EDPS-CNRS, 2007.
[3] F. Dal’Bo et A.N. Starkov, On a classification of limit points of infinitely generated Schottky groups, J. Dyn. control Sys., 6(4) :561–578, 2000.
[4] E. Ghys, Dynamique des flots unipotents sur les espaces homogènes, Sém. Bourbaki, 34 :93–136, 1991-1992.
[5] G. A. Hedlund, Fuchsian groups and transitive horocycles, Duke Math. J., 2(3) :530–542, 1936.
[6] M. Kulikov, The horocycle flow without minimal sets, C.R. A.S., 1338 :477–480, 2004.
[7] S. Matsumoto, Horocycle flow without minimal sets, J. Math. Sci. Univ. Tokyo, 23(3) :661–673, 2016.
[8] A. N. Starkov, Fuchsian groups from the dynamical viewpoint, J. Dyn. control Sys., 1(3) :427–445, 1995.
eISSN : 1793-7434