
CONFLUENTES
MATHEMATICI

Jean-Philippe PRÉAUX
Group Extensions with Infinite Conjugacy Classes
Tome 5, no 1 (2013), p. 73-92.

<http://cml.cedram.org/item?id=CML_2013__5_1_73_0>

© Les auteurs et Confluentes Mathematici, 2013.
Tous droits réservés.

L’accès aux articles de la revue « Confluentes Mathematici »
(http://cml.cedram.org/), implique l’accord avec les condi-
tions générales d’utilisation (http://cml.cedram.org/legal/).
Toute reproduction en tout ou partie de cet article sous quelque
forme que ce soit pour tout usage autre que l’utilisation á fin
strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://cml.cedram.org/item?id=CML_2013__5_1_73_0
http://cml.cedram.org/
http://cml.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


Confluentes Math.
5, 1 (2013) 73-92

GROUP EXTENSIONS WITH INFINITE CONJUGACY CLASSES

JEAN-PHILIPPE PRÉAUX

Abstract. We characterize the group property of being with infinite conjugacy classes (or
icc, i.e. infinite and of which all conjugacy classes except {1} are infinite) for groups which
are extensions of groups. We prove a general result for extensions of groups, then deduce
characterizations in semi-direct products, wreath products, finite extensions, among others
examples we also deduce a characterization for amalgamated products and HNN extensions.
The icc property is correlated to the Theory of von Neumann algebras since a necessary and
sufficient condition for the von Neumann algebra of a discrete group Γ to be a factor of type
II1, is that Γ be icc. Our approach applies in full generality to the study of icc property
since any group that does not split as an extension is simple, and in such case icc property
becomes equivalent to being infinite.

Introduction

A group Γ is said to be with infinite conjugacy classes (or icc for short) if Γ is
infinite and all of its conjugacy classes, except {1}, are infinite. The icc property
has been studied in several classes of discrete groups: free groups and free products
in [9], groups acting on a Bass-Serre tree in [3], fundamental groups of 3-manifolds
and PD(3)-groups in [6].

The main motivation for studying this property in discrete groups arises from
the theory of von Neumann algebras (cf. [4]). For a discrete group Γ one defines
the von Neumann algebra W ∗λ (Γ) of Γ which yields important examples of more
general von Neumann algebras, i.e. of ∗-algebras of bounded operators on a (sep-
arable) Hilbert space closed in the weak topology and containing the identity. The
decomposition theorem of von Neumann asserts that each von Neumann algebra
on a separable Hilbert space is a ’direct integral’ of factors, i.e. of von Neumann
algebras whose centers are reduced to the scalar operators C. Therefore, the prob-
lem of classifying isomorphic classes of von Neumann algebras reduces to that of
classifying isomorphic classes of factors. The factors fall into several types among
which factors of type II1 play an important role and are intensively studied. Con-
cerning von Neumann algebras of groups, factors can only be of type II1 and are
characterized by the
Murray-von Neumann characterization. A von Neumann algebra W ∗λ (Γ) of
a discrete group Γ is a factor of type II1 if and only if Γ is icc.
Thus icc discrete groups provide examples of factors of type II1; uncountably many
as stated in [8]. That makes interesting asking whether an arbitrary discrete group
is icc other not.

This work is concerned with the icc property for extensions of groups (cf. [10]).
We give a characterisation of the icc property by mean of the invariants of the
extension, then we particularize this general result in cases of extensions that split:
semi-direct products and wreath products; among several other cases and examples.

In section 1 we state two concise conditions that are sufficient for a group that
decomposes as an extension to be icc. The former one is also necessary and we
characterize it by a precise statement; we give an example proving that the latter
one is not a necessary condition, despite what one should expect. In section 2 we
weaken that last condition in order to obtain necessary and sufficient conditions;
this yields the main result; we also give noteworthy reformulations under additional
hypotheses. The sections 3 and 4 are devoted to particularizations of the general

Math. classification: 20E45, 20E22.
73



74 Jean-Philippe Préaux

result to, respectively, semi-direct products and wreath products (both complete
and restricted). In the last section we give examples of what the result becomes in
particular cases, among that groups with a proper finite index subgroup, amalgams
of groups and HNN extensions (recovering briefly the results stated in [3]). Those
last examples are an illustration that our approach applies in full generality to
the study of the icc property in groups: on the one hand a simple group is icc
whenever it is infinite (cf. Proposition 0.1), on the other hand any non-simple
group decomposes non-trivially as an extension and our results apply.

0. Notations and preliminaries

Let G be a group, H a non-empty subset of G, e.g. a subgroup, and x, y ∈ G,
we use notations yx := yxy−1 and Hx := {yx; y ∈ H}; in particular, Gx denotes
the conjugacy class of x in G. The centralizer of x in H and the center of G are
denoted respectively by CH(x) and Z(G). Note that the cardinal |Gx| of Gx equals
the index [G : CG(x)] of CG(x) in G; indeed, the group G acts transitively on Gx,
and x has stabilizer CG(x). In particular, icc groups have trivial centers, and a
direct product of groups 6= {1} is icc if and only if each of its factors is icc.

Proposition 0.1. — A simple group is icc if and only if it is infinite.

Proof. — An icc group is infinite, so let G be an infinite simple group, we need
to prove that G is icc. Suppose on the contrary that G is not icc, and let g ∈ G\{1}
with centralizer CG(g) of finite index in G. The intersection C of all conjugates of
CG(g) in G is normal with finite index in G. Since G is infinite C 6= {1}, since G
is simple C = G. But C has a non trivial center which is impossible for an infinite
simple group. �

1. Sufficient conditions that are not necessary

We say that a subgroup N of a group G is finitely normalized by G if N is normal
in G and the action of G by conjugacy on N has only finite orbits. For K a normal
subgroup of G we denote by:

FCG(K) =
{
u ∈ K ; |Gu| <∞

}
the union of finite G-conjugacy classes in K. It’s easily seen that FCG(K) is a
normal subgroup of G, the greatest subgroup of K which is finitely normalized
by G. Let denote by FC(G) = FCG(G) the union of finite conjugacy classes in
G; FC(G) is a characteristic subgroup of G and G 6= {1} is icc if and only if
FC(G) = {1}.

Obviously FCG(K) 6= {1} implies that G is not icc. The condition FCG(K) 6=
{1} is characterized by:

Proposition 1.1. — Let K be a normal subgroup of G; then FCG(K) 6= {1}
if and only if one of the following conditions occurs:

(i) K contains a non-trivial finite subgroup normal in G,
(ii) K contains a non-trivial free Abelian subgroup Zn normal in G such that

the induced homomorphism G −→ GL(n,Z) has a finite image.

Proof. — Clearly if (i) or (ii) occurs then FCG(K) 6= {1}. Let’s show that (i)
and (ii) are also necessary. Let u 6= 1 lying in FCG(K) and Nu the normal subgroup
of K finitely generated by all conjugates of u in G. The centralizer ZG(Nu) of Nu
in G has a finite index in G since it equals the centralizer in G of the finite family
Gu. Therefore the center Z(Nu) = Nu ∩ ZG(Nu) of Nu has finite index in Nu,
and in particular Z(Nu) is a finitely generated normal Abelian subgroup of G.
Let TorZ(Nu) be the subgroup of Z(Nu) consisting of elements with finite order;
TorZ(Nu) is finite, and normal in G since characteristic in Z(Nu). If either Nu is
finite or TorZ(Nu) 6= {1} then condition (i) holds. So we suppose in the following
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that Nu is infinite and Z(Nu) is torsion-free. Under these hypotheses Z(Nu) ' Zn
for some n > 0. The homomorphism:

G −→ Aut(Z(Nu))
g 7−→ (v 7−→ gv)

composes with the isomorphism Aut(Z(Nu)) ' GL(n,Z) into a homomorphism
φ : G −→ GL(n,Z). Given g ∈ G, the automorphism x 7→ gx of Nu permutes the
finite generating set Gu, and in particular Aut(Nu) is finite as a subgroup of the
symmetric group of Gu. Since Aut(Nu) projects onto, φ(G) is finite. Condition (ii)
holds. �

Now that we have a precise statement upon FCG(K) = {1}, we use that condi-
tion to characterize the icc property in extensions of groups. As a first attempt the
next result gives a sufficient condition, that turns to be non-necessary as explained
later.

Proposition 1.2. — Let G 6= {1} be a group that decomposes as an extension:

1 −→ K −→ G
π−→ Q −→ 1

and Θ : Q −→ Out(K) the associated coupling. A sufficient condition for G to be
icc is:

(i) FCG(K) = {1}, and
(ii) Θ restricted to FC(Q) is injective.

Proof. — Let G decomposes as an extension as above. We suppose that G is not
icc and prove that one of the conditions (i) or (ii) fails. Let w ∈ G \ {1} with finite
conjugacy class Gw.
First case. If w ∈ K, then w ∈ FCG(K) and condition (i) fails.
Second case. If w ∈ G \ K; note that π(w) ∈ FC(Q) \ {1}. Given u ∈ K let
wu = [u,w]; on the one hand wu ∈ K and on the other hand wu ∈ FC(G).
First subcase. If ∃u ∈ K with wu = [u,w] 6= 1, then wu ∈ FCG(K) and condition
(i) fails.
Second subcase. If ∀u ∈ K, [u,w] = 1, then Θ(π(w)) = 1 and condition (ii)
fails. �

Corollary 1.3. — The icc property is stable by extension.

Clearly condition (i) is also necessary for G to be icc. Condition (ii) is not, as
shown in the following example.

Example 1.4. — We construct an example of a group G that decomposes as an
extension, and that is icc although condition (ii) of proposition 1.2 fails.

Consider the groups given by finite presentations and their subgroups:

K = 〈a1, a2, k0, k1| [a1, a2], [ai, kj ], i, j = 1, 2〉 ' (Z⊕ Z)× F2

A ' Z⊕ Z the subgroup of K generated by a1,a2,
FK ' F2 the free subgroup of K generated by k0, k1,
Q = 〈q0, q1, q2| [q0, q1] = [q0, q2] = 1〉 ' Z× F2,

Q0 the cyclic subgroup of Q generated by q0,
FQ ' F2 the free subgroup of Q generated by q1, q2 .

Let φ, ψ ∈ SL(2,Z) be the automorphisms of A whose matrices with respect to
the basis a1, a2 are:

Mφ =
(

1 1
0 1

)
Mψ =

(
1 0
1 1

)
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Consider the three automorphisms θ(q0), θ(q1), θ(q2) ∈ Aut(K) defined by:
∀ k ∈ K, ∀ a ∈ A,

θ(q0)(k) = k0k,

 θ(q1)(a) = φ(a)
θ(q1)(k0) = k0a2
θ(q1)(k1) = k1

,

 θ(q2)(a) = ψ(a)
θ(q2)(k0) = k0a1
θ(q2)(k1) = k1

One verifies that θ(q0) both commutes with θ(q1) and θ(q2) so that θ extends to
θ : Q −→ Aut(K). Define G = K oθ Q; G is a split extension with coupling
Θ = Π ◦ θ where Π : Aut(K)→ Out(K) is the natural projection.

Here FC(Q) = Q0 and Θ is non injective when restricted toQ0, indeed Θ(q0) = 1
for θ(q0) is inner. Therefore G does not satisfy condition (ii) of proposition 1.2.
Let’s prove that nevertheless G is icc.

Note that A is the center of K, so that θ induces θ : Q −→ Aut(A); one has
θ(q0) = Id, θ(q1) = φ and θ(q2) = ψ. Moreover FC(K) = A is free Abelian with
rank 2. The maximal proper subgroup of A preserved by φ (respectively ψ) is cyclic
generated by a1 (respectively a2); hence θ(Q) does not preserve a proper subgroup
6= {1}. Moreover θ(Q) is infinite, as well as its isomorphic image in GL(2,Z).
According to proposition 1.1, FCG(K) = {1}. Hence for all k ∈ K, Gk is infinite,
and it suffices now to prove that all elements in G \ K have infinite conjugacy
classes.

An element in G \K is of the type: w = akqn0 q with a ∈ A, k ∈ FK , q ∈ FQ and
n ∈ Z∗. Whenever q 6= 1, Gw is infinite since it projects onto the infinite conjugacy
class FQq in FQ free group of rank 2. Consider now the remaining case w = akqn0 .
If k does not lie in the subgroup generated by k0, then kp0wk

−p
0 = akp0kk

−p
0 qn0 and

{kp0wk
−p
0 ; p ∈ Z} ⊂ Gw is infinite. Hence we are now left with the case w = akm0 q

n
0 ,

m ∈ Z, n ∈ Z∗. Consider the set {qp1wq
−p
1 ; p ∈ Z} ⊂ Gw,

qp1wq
−p
1 = qp1ak

m
0 q

n
0 q
−p
1 = φp(a)km0 am2 φ(am2 ) · · ·φp−1(am2 ),

and one obtains that {qp1wq
−p
1 ; p ∈ Z} is finite if and only if:

∃ p ∈ N, φp(a)−1a = am2 φ(am2 ) · · ·φp−1(am2 ) . (1.1)

We now use additive notations and discuss on equation (1):

∃ p ∈ N, (Id− φp)(a) = (Id+ φ+ · · ·+ φp−1)(am2 ) .

One has:

Mφp =
(

1 p
0 1

)
; I−Mφp =

(
0 −p
0 0

)
; I+Mφ+· · ·+Mφp−1 =

(
p p(p−1)

2
0 p

)
,

and am2 =
(

0
m

)
; set a =

(
x
y

)
, the equation (1) becomes:

∃ p ∈ N,
(
−py

0

)
=
(
mp(p−1)

2
mp

)
which should hold only for m = 0. But when m = 0, w = aqn0 , on the one hand
qp1wq

−p
1 = φp(a)qn0 and {qp1wq

−p
1 ; p ∈ Z} is infinite whenever a and a2 are not

collinears; on the other hand qp2wq
−p
2 = φp(a)qn0 and {qp2wq

−p
2 ; p ∈ Z} is infinite

whenever a and a1 are not collinears. In conclusion Gw is infinite, and this proves
that G is icc.

2. General results on extensions of groups

We establish a necessary and sufficient condition for an arbitrary group G that
decomposes as an extension to be icc. Keeping in mind the sufficient conditions
given in proposition 1.2, this is done by weakening the condition (ii).
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We focus on a group G 6= {1} which decomposes as an extension, i.e. that fits
into a short exact sequence:

1 // K // G
π // Q // 1

with Θ : Q −→ Out(K), the associated coupling. Throughout the section, Z
denotes the center Z(K) of K and for any q ∈ Q, C(q) denotes the centralizer
CQ(q) of q in Q.

2.1. A preliminary definition. We fix a section s : Q −→ G, i.e. a map such
that ∀q ∈ Q, π ◦ s(q) = q ; we will rather denote q := s(q). The section s defines
∀q ∈ Q a lift θq of Θ(q) in Aut(K) defined by θq(x) = q x q−1 = qx for all x ∈ K
(for more convenience, we shall use both notations θq(x) and qx). We will also write
θa(x) = ax for all a, x ∈ K.

Let q ∈ ker Θ; i.e. q lies in Q and there exists k ∈ K (depending on s) such that
θq(x) = k x k−1 for all x ∈ K. given u ∈ C(q), uqu−1 = q in Q; hence there exists
an element δq(u) in K (depending on s), defined by:

u q u−1 = q δq(u) in G .

Keeping these notations in mind, the next proposition asserts that each q ∈ ker Θ
defines an element [q] in the first cohomology group H1(C(q), Z); it will be proved
in section §2.4.

Proposition-Definition 2.1. — A section s : Q −→ G is given. Let q ∈ ker Θ
and k ∈ K be such that ∀x ∈ K, θq(x) = kxk−1.

(1) For any u ∈ C(q) let δq(u) ∈ K be such that u q u−1 = q δq(u). Then:
the element dq(u) := δq(u)−1k−1 uk lies in the center Z of K.

(2) Define the map:

dq : C(q) −→ Z
u −→ dq(u) := δq(u)−1k−1 uk .

The map dq is a 1-cocycle.
(3) The cocycle dq : C(q) −→ Z defines an element [q] in H1(C(q), Z) that

only depends on q ∈ ker Θ and on the equivalence class of the extension G
of K by Q.

The first cohomology group H1(C(q), Z) is the quotient group of the Abelian
group of crossed homomorphisms with respect to multiplication:

f : C(q) −→ Z, such that ∀u, v ∈ C(q), f(uv) = f(v)
(
vf(u)

)
.

by the normal subgroup of those crossed homomorphisms that are principal:

f : C(q) −→ Z, such that ∃ z ∈ Z, ∀u ∈ C(q), f(u) = z−1 uz .

Remark 2.2. — In case the extension splits, G = K oQ:
For any q ∈ ker Θ, the homology class [q] ∈ H1(C(q), Z) given by proposition-

definition 2.1 is: let θq(x) = k x k−1 for k ∈ K, then [q] is represented by the
1-cocycle:

C(q) −→ Z
u −→ [k−1, u]

and does not depend on the choice of k ∈ K such that θq(x) = kx.
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2.2. Statement of the main result. We can now enunciate a necessary and
sufficient condition for a group G which decomposes as an extension to be icc.
(The proof is achieved in §2.4.2.)

Theorem 2.3 (icc extension). — Let G 6= {1} be a group that decomposes as
an extension:

1 // K // G
π // Q // 1

Let Φ : FC(Q) −→ Out(K) denotes the restriction of the coupling Θ to FC(Q).
A necessary and sufficient condition for G to be icc is:
(i) FCG(K) = {1}, and
(ii) ker Φ does not contain an element q 6= 1 such that [q] = 0 in H1(C(q), Z).

Example 2.4. — In Example 1.4, we have exhibited a group G which is icc
while holds condition (i) but not condition (ii) of proposition 1.2. Let’s verify that
G satisfies condition (ii) of Theorem 2.3.

One has Z = A, C(q) = Q, FC(Q) = Q0 and ker Φ = Q0 is cyclic generated by
q0; let q 6= 1 ∈ ker Φ, q = qn0 , hence [q] ∈ H1(Q,A) is represented by the 1-cocycle:

dq : Q −→ A
u 7−→ [k−n0 , u]

(cf. remark 2.2); one has dq(q1) = an2 . Suppose that [q] = 0, therefore ∃ a ∈ A such
that ∀u ∈ Q, dq(u) = a−1 ua. By taking u = q1 one obtains dq(q1) = a−1φ(a). We
now use additive notations in the basis a1, a2 of A. If [q] = 0 there exists a = (x, y)
in A such that:

(φ− Id)(a) = na2 ⇐⇒
(

0 1
0 0

)(
x
y

)
=
(
y
0

)
=
(

0
n

)
which is impossible. Therefore for any q ∈ ker Φ \ {1}, [q] 6= 0; the condition (ii) of
Theorem 2.3 holds.

Examples 2.5. — Additional hypotheses on the groups involved can make the
result more concise. We emphasize here some examples (see also §5):

– whenever K is centerless, G is icc if and only if condition (i) holds and
Φ : FC(Q) −→ Out(K) is injective,

in particular:
– wheneverK is icc, G is icc if and only if Φ : FC(Q) −→ Out(K) is injective,

with Proposition 0.1:
– wheneverK is simple, G is icc if and only ifK is infinite and Φ : FC(Q) −→
Out(K) is injective.

Moreover, if K is centerless the extension is characterized up to equivalence by the
coupling Θ : Q −→ Out(K) (cf. Corollary 6.8, Chap IV, [1]); it follows that:

– whenever K is centerless and Q is simple, G is icc if and only if K is icc
and either Q is infinite or the extension is not equivalent to K ×Q.

2.3. A noteworthy particular case. (Results in this section are proved in §2.4.3).
The 1-cocycle associated to an element in ker Φ, Φ : FC(Q) −→ Out(K), defined
in proposition 2.1 yields also a homomorphism from ker Φ to H1(CQ(FC(Q), Z).

Proposition-Definition 2.6. — There exists a homomorphism
Ξ : ker Φ −→ H1(CQ(FC(Q)), Z) ,

defined by: for all q ∈ ker Φ, Ξ(q) is represented by the 1-cocycle dq:
dq : CQ(FC(Q)) −→ Z

u −→ dq(u) = δq(u)−1k−1 uk

where θq(x) = k x k−1 for all x ∈ K.
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Under an additional hypothesis on Q, namely that FC(Q) is finitely generated,
one gives a more concise necessary and sufficient condition where condition (ii) is
rephrased by mean of a homomorphism from ker Φ to H1(CQ(FC(Q)), Z(K)).

Proposition 2.7 (In case FC(Q) is finitely generated). — Under the same hy-
potheses as Theorem 2.3, if moreover FC(Q) is finitely generated, or more generally
if CQ(FC(Q)) has finite index in Q,a necessary and sufficient condition for G to be
icc is:

(i) FCG(K) = {1}, and
(ii′) The homomorphism Ξ : ker Φ −→ H1(CQ(FC(Q)), Z) is injective.

An example of the wide applicability of this formulation is given in example 5.9
of §5.3. The next example shows that the hypothesis [Q : CQ(FC(Q)] < ∞ is
necessary in Proposition 2.7.

Example 2.8. — Here is an example where CQ(FC(Q)) has infinite index in Q
and G is icc while condition (ii′) fails. Consider the groups:

A = 〈a1, . . . , an, . . . | [ai, aj ], ∀ i, j ∈ N∗〉 ' Zω,
Q = 〈A, t | ∀n ∈ N∗, tnan t−n = an〉

and
K = 〈α, β, α1, β1, . . . , αn, βn, . . . |

∀ i, j ∈ N∗, [αi, βj ] = [α, αi] = [α, βj ] = [β, αi] = [β, βj ] = 1〉

' F2 ×
⊕
n∈N∗

(Z⊕ Z)

Let An be the Abelian subgroup of K generated by αn, βn. Consider an anosov
automorphism (i.e. with irrational eigenvalues) ϕ ∈ SL(2,Z) of Z ⊕ Z and define
the homomorphism θ : A −→ Aut(K) by:

∀x ∈ K, θ(a1)(x) = αx and ∀n ∈ N∗, θ(an+1)(x) =
{
ϕ(x) if x ∈ An
x otherwise

Let G0 = KoθA; one has FC(K) = Z(K) =
⊕

n∈N∗ An and G0 is not icc (α−1αG0
1

is finite). Using Theorem 2.3 and Proposition 2.7 one sees that the homomorphism
Ξ : ker Φ −→ H1(A,Z(K)) is non-injective (here ker Φ is cyclic generated by a1
and Ξ(ker Φ) = {0}).

Extend θ to ϑ : Q −→ Aut(K) by setting ϑ(t)(α) = αα1 and ϑ(t)(x) = x
for x = β, α1, β1, . . . , αn, βn. Define G = K oϑ Q; G is icc (ϑ(Q)(αn) is infinite);
nevertheless, Ξ : ker Φ −→ H1(CQ(FC(Q), Z(K)) is non-injective (here again ker Φ
is generated by a1 and CQ(FC(Q)) = A).

2.4. Proof of the results.

2.4.1. Proof of Proposition-Definition 2.1. In the following, we consider elements
q ∈ ker Θ, k ∈ K such that θq(x) = k x k−1 for all x ∈ K, and for all u ∈ C(q),
δq(u) in K defined by:

u q u−1 = q δq(u) in G .

Lemma 2.9. — For all u ∈ C(q), δq(u)−1k−1 uk lies in the center Z of K.

Proof. — Since u ∈ C(q), u q u−1 = q δq(u) one has θu ◦ θq ◦ θ−1
u = θq ◦ θδq(u) in

Aut(K). Hence ∀x ∈ K,
θu ◦ θq ◦ θ−1

u (x) = θq ◦ θδq(u)(x)
⇐⇒ θu(k θ−1

u (x) k−1) = k δq(u)x δq(u)−1 k−1

⇐⇒ θu(k)x θu(k)−1 = k δq(u)x δq(u)−1 k−1

and it follows that δq(u)−1k−1 uk = δq(u)−1k−1θu(k) commutes with all x ∈ K. �
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Given q ∈ ker Θ and k ∈ K as above, define the map:
dq : C(q) −→ Z

u −→ dq(u) := δq(u)−1k−1 uk .

Note that a-priori dq does depend on both the section s and the choice of an element
k ∈ K such that θq(x) = kx.

Lemma 2.10. — The map dq : C(q) −→ Z is a 1-cocycle.

Proof. — We need to show that ∀u, v ∈ C(q), dq(uv) = dq(u) udq(v). We denote
by f : Q × Q −→ K the 2-cocycle defined by the extension and by the section s,
such that:

∀x, y ∈ Q, x y = xy f(x, y) .
Let u, v ∈ C(q). In order to compute dq(uv) we need to compute first δq(uv) and
θuv. Since uv = u v f(u, v)−1, one has θuv = θu ◦ θv ◦ θf(u,v)−1 .
Computation of δq(uv). One has uv q uv−1 = q δq(uv).

uv q uv−1 = u v f(u, v)−1q f(u, v) v−1u−1

= u vf(u, v)−1 v q v−1 vf(u, v)u−1

= u vf(u, v)−1 u q δq(v)u−1 u vf(u, v)

= u vf(u, v)−1 u q u−1 uδq(v) u vf(u, v)

= u vf(u, v)−1 q δq(u) uδq(v) u vf(u, v)

= q q
−1u vf(u, v)−1 δq(u) uδq(v) u vf(u, v)

Therefore δq(uv) = q−1u vf(u, v)−1 δq(u) uδq(v) u vf(u, v).
By applying the definition, we obtain on the one hand:
dq(uv) = δq(uv)−1k−1θuv(k)

= u vf(u, v)−1 uδq(v)−1 δq(u)−1 q−1u vf(u, v) k−1 u v(f(u, v)−1k f(u, v))

= u vf(u, v)−1 uδq(v)−1 δq(u)−1 q−1u vf(u, v) q
−1u vf(u, v)−1 k−1 u v(k f(u, v))

= u vf(u, v)−1 uδq(v)−1 δq(u)−1k−1 u v(k f(u, v))

= u vf(u, v)−1 uδq(v)−1 δq(u)−1k−1 u vk u vf(u, v)

and since dq(uv) lies in the center Z of K (lemma 2.9), f(u, v), δq(v) both lie in K,
and K is preserved both by θu, θv:

dq(uv) = uδq(v)−1 δq(u)−1k−1 u vk

= δq(u)−1k−1 u vk uδq(v)−1 .

On the other hand, since δq(v) ∈ K, dq(v) ∈ Z and Z is a characteristic subgroup
of K:

udq(v) = u(δq(v)−1k−1 vk)

= u(k−1 vk δq(v)−1)
so that:

dq(u) udq(v) = δq(u)−1k−1 uk uk−1 u vk uδq(v)−1

= δq(u)−1k−1 u vk uδq(v)−1

= dq(uv)
which proves that dq : C(k) −→ Z is a 1-cocycle. �

Lemma 2.11. — The cocycle dq : C(q) −→ Z defines an element [q] inH1(C(q), Z))
which only depends on q ∈ ker Θ and on the equivalence class of the extension G
of K by Q.
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Proof. — The cocycle dq defines an element of H1(C(q), Z), we need to prove
that it depends neither on k ∈ kZ nor on the section s.

Let k1 ∈ kZ, say k1 = kz for some z ∈ Z, which, as above, defines the 1-cocycle
d′q : C(q) −→ Z by:

d′q(u) = δq(u)−1k−1
1

uk1

= δq(u)−1z−1k−1 uk uz

= δq(u)−1k−1 uk z−1 uz

= dq(u) z−1 uz

dq, d′q differ by the 1-coboundary : z −→ z−1 uz, so that they define the same
element of H1(C(q), Z).

Now we show that [q] does not depend on the section s. We proceed in two
steps. First we change s(q) = q into s(q) = q̃ = q q̂ for some q̂ ∈ K. Consider
k′ = k q̂; since for all x ∈ K, q̃x = k′x it defines a 1-cocycle denoted d′q whose
class in H1(C(q), Z) does not depend on the choice of q̂. Obviously, d′q(q) = dq(q).
Given u ∈ Z(q), δq(u) changes into δ′q(u) = q̂−1δq(u) θu(q̂), for:

u q̃ u−1 = u q q̂ u−1 = u q u−1 u q̂ = q δq(u) u q̂ = q̃ q̂ −1 δq(u) u q̂
Hence:
d′q(u) = δ′q(u)−1k′

−1
θu(k′) = u q̂−1 δq(u)−1q̂ q̂−1k−1 uk u q̂ = u q̂−1 δq(u)−1k−1 uk u q̂

and since d′q(u) ∈ Z and u q̂ ∈ K, one obtains d′q(u) = δq(u)−1k−1 uk = dq(u),
which achieves the first step.

Now we change for u ∈ Z(q), s(u) = u into s(u) = ũ = u û for some û ∈ K. It
changes δq(u) into δ′q(u) = δq(u) u(q−1

ûû−1) for:

ũ q ũ−1 = u û q û−1 u−1 = u q q
−1
û û−1 u−1 = u q u−1 u(q

−1
ûû−1) = q δq(u) u(q

−1
ûû−1) .

Moreover, ũk = uku(q−1
ûû−1) for:

ũk = u û k û−1 u−1 = u k k
−1
û û−1u−1 = u k u−1 u(k

−1
ûû−1) = uk u(q

−1
ûû−1)

and we obtain:
d′q(u) = δ′q(u)−1k−1 ũk

= (u(q
−1
ûû−1))−1δq(u)−1k−1 uku(q

−1
ûû−1)

= u(q
−1
ûû−1)−1 dq(u) u(q

−1
ûû−1)

= dq(u)

since dq(u) ∈ Z and u(q−1
ûû−1) ∈ K, this achieves the second step. �

2.4.2. Proof of Theorem 2.3. We already know that condition (i) is necessary (see
§0). We now proceed in two steps.

Step 1. G icc =⇒ condition (ii). — Suppose on the contrary that condition
(ii) fails: there exists q ∈ ker Φ such that q 6= 1 and [q] = 0 in H1(CQ(q), Z(K)).
According to the following Lemma 2.12 there exists ω ∈ G \ K such that CG(ω)
contains the preimage π−1(CQ(q)). But since q ∈ FC(Q), CQ(q) has finite index
in Q so that, CG(ω) also has finite index in G. Therefore G is not icc. �

Lemma 2.12. — If there exists q ∈ ker Φ\{1} such that [q] = 0 inH1(CQ(q), Z(K)),
then there exists ω ∈ G \K such that CG(ω) ⊃ π−1(CQ(q)).

Proof of Lemma 2.12. — We fix a section s : Q −→ G and use the same notations
as in §2.1. Let k ∈ K such that θq(x) = k x k−1 for all x ∈ K. Since [q] = 0, there
exists z ∈ Z(K) such that for any u ∈ CQ(q),

dq(u) := δq(u)−1k−1 uk = z−1 uz .
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Let ω = q z k−1 ∈ G; since q 6= 1, ω ∈ G \ K. Its centralizer CG(ω) contains K;
indeed for all x in K,

ω xω−1 = q z k−1x k z−1 q−1

= q k−1x k q−1

= k k−1x k k−1

= x

Moreover for any u ∈ CQ(q), u also lies in CG(ω), for:

uω u−1 = u q z k−1u−1

= u q u−1 uz uk−1

= q δq(u) uz uk−1

= q k−1 uk uz−1 z uz uk−1

= q k−1 uk uz−1 uz uk−1 z

= q k−1z

= q z k−1

= ω

hence CG(ω) contains the preimage π−1(CQ(q)) of CQ(q) by π : G −→ Q. �

Step 2. condition (i) and (ii) =⇒ G is icc. — We suppose that G is not icc and
prove that either condition (i) or condition (ii) fails. Suppose there exists u 6= 1
in G with Gu finite. If u ∈ K, u ∈ FCG(K) and condition (i) fails. So suppose
that u = q k−1 for some k ∈ K and q 6= 1 in Q; q necessarily lies in FC(Q). Let
K0 = CG(u) ∩ K; it has finite index in K, and ∀x ∈ K0, θq(x) = k x k−1. If
K0 6= K, let h ∈ K \ K0 and ω = [u, h] 6= 1; then ω lies in K and Gω is finite
since CG(ω) ⊃ CG(u)∩hCG(u)h−1 has finite index in G. Therefore when K0 6= K
condition (i) fails.

Suppose in the following that K = K0, i.e. θq is inner, ∀x ∈ K, θq(x) = k x k−1.
Let Q0 = π(CG(u)); Q0 is included in CQ(q). If CQ(q)\Q0 6= ∅, let p ∈ CQ(q)\Q0;
one has w = [p, u] 6= 1 in G. Let’s prove that w lies in Z(K):

p, ut = p q k−1p−1k q−1

= p q p−1 pk−1 k q−1

= q δq(p) pk−1 k q−1

= k δq(p) pk−1 k k−1

= k δq(p) pk−1

is conjugated in K to dq(p)−1 ∈ Z(K); hence w = dq(p)−1 ∈ Z(K) ⊂ K. Further-
more w has a finite conjugacy class in G since CG(w) contains CG(u)∩pCG(u) p−1

which has a finite index in G. Hence w ∈ FCG(K) and condition (i) fails.
Suppose now that π(CG(u)) = CQ(q); let v ∈ CQ(q), since CG(u) ⊃ K one has

v u v−1 = u in G. Then:
q k−1 = v q k−1 v−1

= v q v−1 vk−1

= q δq(v) vk−1

=⇒ δq(v)−1k−1 vk = dq(v) = 1 .

Hence for all v ∈ CQ(q), dq(v) = 1, so that [q] = 0 in H1(CQ(q), Z(K))). Condition
(ii) fails. �
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2.4.3. Proofs of results of §2.3.
Proof of Proposition-Definition 2.6. — The proof of Proposition-Definition 2.1

remains valid since for any q ∈ FC(Q), CQ(FC(Q)) ⊂ CQ(q), so that the map Ξ is
well defined. It remains to show that Ξ is a homomorphism. Let q1, q2 ∈ ker Φ, such
that there exists k1, k2 ∈ K with ∀x ∈ K, θq1(x) = k1 x k

−1
1 and θq2(x) = k2 x k

−1
2 .

Then q1q2 ∈ FC(Q) and since q1 q2 = q1q2 f(q1, q2),

θq1q2(x) = k1k2f(q1, q2)−1 x f(q1, q2)(k1k2)−1 .

Computation of δq1q2 . Given u ∈ Q,

u q1 q2 u
−1 = q1 δq1(u) q2 δq2(u) = q1 q2

k−1
2 δq1(u)δq2(u)

= u q1q2 f(q1, q2)u−1 = q1q2 δq1q2(u) uf(q1, q2)

=⇒ δq1q2(u) = f(q1, q2) k
−1
2 δq1(u)δq2(u) uf(q1, q2)−1 .

Computation of dq1q2 . For u ∈ Q, by definition:

dq1q2(u) = uf(q1, q2) δq2(u)−1k−1
2 δq1(u)−1f(q1, q2)−1f(q1, q2) k−1

2 k−1
1

uk1
uk2

uf(q1, q2)−1

= uf(q1, q2) δq2(u)−1 k−1
2 δq1(u)−1 k−1

2 k−1
1

uk1
uk2

uf(q1, q2)−1

= uf(q1, q2) δq2(u)−1k−1
2 δq1(u)−1 k−1

1
uk1

uk2
uf(q1, q2)−1

= uf(q1, q2) δq2(u)−1k−1
2 dq1(u) uk2

uf(q1, q2)−1

= uf(q1, q2) dq1(u) δq2(u)−1k−1
2

uk2
uf(q1, q2)−1

= uf(q1, q2) dq1(u) dq2(u) uf(q1, q2)−1

= dq1(u) dq2(u)

(keep in mind that ∀ q ∈ ker Φ, ∀u ∈ Q, dq(u) ∈ Z(K).)
Hence [q1 q2] = [q1] [q2] which proves that Ξ is a homomorphism. �

Proof of Proposition 2.7. — If FC(Q) is finitely generated then CQ(FC(Q))
has finite index in Q for it is the intersection of the centralizers of the finite fam-
ily of generators of FC(Q). Suppose now that CQ(FC(Q)) has finite index in
Q. The proof of Theorem 2.3 remains valid in such a case if one changes CQ(q)
into CQ(FC(Q)) by noting that under this hypothesis for any q ∈ FC(Q), CQ(q)
contains CQ(FC(Q)) as a finite index subgroup. �

3. Semi-direct products

In this section we particularize Theorem 2.3 in the case the extension splits, i.e.
when there exists a section s : Q −→ G which is a homomorphism; once K and
Q are identified with their isomorphic images in G, the group G stands for the
semi-direct product G = KoθQ with associated homomorphism θ : Q −→ Aut(K).
With this notation, for any k ∈ K, q ∈ Q, q k q−1 = θ(q)(k) in G. We shall write
in the following θq instead of θ(q). We denote by Φ : FC(Q) −→ Out(K) the
homomorphism which makes the following diagram commute:

Q
θ // Aut(K)

����
FC(Q)

Φ //
?�

OO

Out(K)

We reach a new formulation of the necessary and sufficient condition given by
Theorem 2.3 that rephrases condition (ii) and can also be expressed in terms of
infiniteness of orbits of θ(Q) in some subgroups ofK and injectivity of the restriction
of θ to FC(Q).



84 Jean-Philippe Préaux

3.1. Statement and rephrasing of the result. The main result for semi-direct
products with infinite conjugacy classes is:

Theorem 3.1 (icc semi-direct product). — Let G = K oθ Q 6= {1}; G is icc if
and only if:

(i) FCG(K) = {1}, and
(ii) For all q ∈ ker Φ \ {1} and k ∈ K with ∀x ∈ K, θq(x) = k x k−1, k has an

infinite θ(Q)-orbit.

The result is proved in the next section.

Remark 3.2. — Let ϑ : G −→ Aut(K) be the homomorphism that extends θ to
G, i.e. ∀ g ∈ G, k ∈ K, ϑ(g)(k) = g k g−1, and ϑK : K −→ Inn(K) its restriction
to K; the diagram below commutes.

K
ϑK// //

q�

##FF
FF

FF
FF

FF
Inn(K)

r�

$$IIIIIIIII

G
ϑ // // ϑ(G) � � // Aut(K)

Q
- 

;;xxxxxxxxxx

θ
// // θ(Q)

, �

::uuuuuuuuu

Define:
Kθ := ϑ−1

K (Inn(K) ∩ θ(FC(Q)))
Kθ is a subgroup of K that is preserved under the action of θ(Q). Then Theorem
3.1 rephrases as:
Rephrasing of Theorem 3.1.— Let G = K oθ Q 6= {1}; Then G is icc if and
only if the following conditions hold:

(i) θ(Q) has only infinite orbits in FC(K) \ {1},
(ii.a) θ(Q) has only infinite orbits in Kθ \ {1},
(ii.b) θ : Q −→ Aut(K) restricted to FC(Q) is injective,

Example 3.3. — In particular, whenever K \ {1} contains no finite θ(Q)-orbits,
G is icc if and only if θ : FC(Q) −→ Aut(K) is injective.

For example The semi-direct product K o Aut(K) is icc if and only if Aut(K)
has no finite orbits in K \ {1}; e.g. the group of rigid motions Rn o O(n) of the
nth-dimensional euclidian space is icc, while none of its discrete subgroups are icc,
since by the Bieberbach theorem, they are all virtually Abelian (see Proposition
5.3).

3.2. Proof of Theorem 3.1. We prove the equivalence here between condition
(ii) of Theorem 3.1 and condition (ii) of Theorem 2.3. We proceed in two steps.

Step 1. Conditions (i) and (ii) of Theorem 2.3 =⇒ condition (ii) of Theorem
3.1. — Suppose that condition (ii) of Theorem 3.1 does not hold: there exists
q ∈ FC(Q) \ {1} such that θq(x) = kxk−1 ∀x ∈ K for some k with finite θq-orbit.
Then Q0 = θ−1(Stabθ(Q)(k)) has a finite index in Q, and let Z0 = Q0 ∩ ZQ(q); Z0
has a finite index in Q.
First case. Suppose ZQ(q) \ Z0 6= ∅ and let u ∈ ZQ(q) \ Z0; since [u, q] = 1,
necessarily [u, k] ∈ Z(K), thereby since u 6∈ Z0, there exists z 6= 1 in Z(K) such that
uku−1 = kz. Then ZG(z) ⊃ K, and since z = k−1uku−1, ZG(z) ⊃ Q0 ∩ uQ0 u

−1.
Hence ZG(z) has a finite index in G therefore FCG(K) 6= {1}: condition (i) fails.
Second case. Suppose that Z0 = ZQ(q). For any u ∈ ZQ(q), θ(u) ∈ Stabθ(Q)(k)
so that dq(u) = [k−1, u] = 1 and [q] = 0 in H1(ZQ(q), Z(K)) (see remark 2.2);
condition (ii) of Theorem 2.3 fails. �
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Step 2. Condition (ii) of Theorem 3.1 =⇒ condition (ii) of Theorem 2.3. —
Suppose that condition (ii) of Theorem 2.3 does not hold: let q ∈ FC(Q) \ {1}
and k ∈ K such that ∀x ∈ K, θq(x) = k x k−1, and suppose that [q] = 0 in
H1(ZQ(q), Z(K)). There exists z ∈ Z(K) such that ∀u ∈ ZQ(q), k−1u k u−1 =
z uz−1 and it follows that [u, kz] = 1:

k−1u k u−1 = z uz−1

⇐⇒ z−1k−1u k u−1 uz = 1
⇐⇒ (k z)−1u k z u−1 = 1

Let k′ = kz, then θq(x) = k′ x k′−1 and since ZQ(q) has a finite index in Q, k′ has
a finite θ(Q)-orbit. Condition (ii) of Theorem 3.1 fails. �

4. Wreath products

Throughout the section, D, Q are groups and Ω is a Q-set, i.e. a set equipped
with a left Q-action. Let G be the complete (or unrestricted) wreath product denoted
by G = D oΩQ, i.e. let DΩ denote the group of maps from Ω to D and let λ : Q −→
Aut(DΩ) be the homomorphism defined by ∀x ∈ Ω, ∀φ ∈ DΩ, λ(q)(φ)(x) = φ(q−1x)
; the group G is the split extension G = DΩoQ associated with λ, in the sense that
∀φ ∈ DΩ, ∀q ∈ Q, qφq−1 = λ(q)(φ). When Ω = Q with Q acting by multiplication
on the left one talks of the complete regular wreath product denoted by D oQ.

We also consider the restricted wreath product G = D oΩr Q: let D(Ω) be the
group of maps from Ω to D with finite support, and define as above G as the
split extension G = D(Ω) oQ associated with λ; G is a subgroup of D oΩ Q which
is countable whenever D and Q are countable. When Ω = Q, one talks of the
restricted regular wreath product D or Q.

4.1. Statement of the results. We obtain different results for restricted and
complete wreath products. The two following results concern restricted wreath
products.

Theorem 4.1 (icc restricted wreath products). — Let G = D oΩr Q, with D 6=
{1} ; a necessary and sufficient condition for G to be icc is that, on the one hand
at least one of the following conditions holds:

(i.a) D is icc,
(i.b) all Q-orbits in Ω are infinite.

and on the other hand the following condition holds:
(ii) 1 is the only element of FC(Q) which fixes Ω pointwise,

Corollary 4.2 (restricted regular wreath products icc). — When the Q-action
on Ω is free (in particular, for D or Q), G is icc if and only if either D is icc or Q is
infinite.

We now turn to the similar results for complete wreath products.

Theorem 4.3 (icc complete wreath products). — Let G = D oΩr Q, with D 6=
{1} ; a necessary and sufficient condition for G to be icc is that, on the one hand
at least one of the following conditions holds:

(i.a) D is icc,
(i.b) all Q-orbits in Ω are infinite.

and on the other hand the two following conditions hold:
(ii) 1 is the only element of FC(Q) which fixes Ω pointwise,
(iii) D is centerless.

Corollary 4.4 (complete regular wreath products icc). — When the Q-action
on Ω is free (in particular, for D oQ), G is icc if and only if either D is icc or Q is
infinite and D is centerless.
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Example 4.5. — The lamplighter group Z/2Z or Z is icc while the complete
wreath product Z/2Z o Z is not. Let Ω = Z/nZ be equipped with the natural Z-
action (p, q mod n) 7→ p + q mod n, then Z/nZ oΩ Z and Z/nZ oΩ,r Z are not icc
(conditions (i.a) and (i.b) fail).

Corollary 4.6. — The icc property is stable under wreath product: any com-
plete (respectively restricted) wreath product of icc groups is icc.
4.2. Proofs of the results. In both cases G is seen as a semi-direct product and
the property icc is discussed using the reformulation of Theorem 3.1 in remark 3.2.

Proof of Theorem 4.1. — Let K = D(Ω); G = K oθ Q. First observe that
FC(K) = FC(D)(Ω), hence FC(K) = {1} if and only if FC(D) = {1}. Condition
(i) in remark 3.2 is equivalent to FCG(K) = {1}. Let’s prove that here:

FCG(K) = {1} ⇐⇒

 FC(D) = {1}
or
all Q-orbits in Ω are infinite

Indeed, suppose that FCG(K) = {1}; if FC(D) 6= {1} let u 6= 1 lying in FC(D).
If Ω would contain a finite Q-orbit Q.ω then the map from Ω to D which equals u
in ω and 1 everywhere else would lie in FCG(K) \ {1}; impossible. This proves the
necessary part of the assumption. Reciprocally: if FC(D) = {1} then FC(K) =
{1} and therefore FCG(K) = {1}. If FC(D) 6= {1} and Ω contains only infinite
Q-orbits, let η ∈ FC(D)(Ω) \ {1}, then Q.supp(η) is infinite but also equals the
finite union of finite sets ∪q∈Qsupp(qη); impossible. This proves the sufficient part
of the assumption. Hence condition (i) in remark 3.2 is equivalent to conditions
(i.a) or (i.b) of Theorem 4.1.

Secondly, Kθ = Z(K) = Z(D)(Ω) since here all automorphisms in θ(Q) that are
inner are therefore the identity. Here condition (ii.a) in remark 3.2 is a particular
case of its condition (i).

Finally, θ : Q −→ Aut(K) is injective if and only if 1 is the only element of Q
that fixes Ω pointwise. Condition (ii.b) in remark 3.2 is equivalent to condition
(ii) of Theorem 4.1. We conclude with the formulation of Theorem 3.1 in remark
3.2. �

Proof of Theorem 4.3. — Let K = DΩ; G = K oθ Q and keep in mind the
proof of Theorem 4.1. Here again FC(K) = FC(D)Ω. Condition (i) in remark 3.2
is equivalent to FCG(K) = {1}. Let’s prove that here:

FCG(K) = {1} ⇐⇒

 FC(D) = {1}
or
all Q-orbits in Ω are infinite and Z(K) = {1}

As above FCG(K) = {1} implies that either FC(D) = {1} or Ω contains only
infinite Q-orbits. But moreover necessarily Z(D) = {1} for otherwise let z 6= 1
lying in Z(D) the map from Ω to D constant equal to z would lie in Z(K) and
thereby in FCG(K). This proves the necessary part. Reciprocally; if FC(D) = {1}
then FCG(K) = {1} so suppose in the following that FC(D) 6= {1}. Suppose that
Ω contains only infinite Q-orbit and that FCG(K) 6= {1}; let η : Ω −→ FC(K)
be an element of FCG(K) \ {1}. Since Qη is finite and Q has no finite orbits in
Ω, necessarily supp(η) is infinite. Moreover its conjugacy class Kη contains all
η′ : Ω −→ FC(K) such that ∀x ∈ Ω, η′(x) and η(x) are conjugate in D. In
particular Kη is infinite once for an infinite set of elements x in Ω, Dη(x) is not
a singleton. Hence necessarily Z(D) 6= {1}. This proves the sufficient part. The
remaining of the proof goes the same way as for Theorem 4.1. �

5. Examples

We now look at some particular cases and look how Theorem 2.3 rephrases.
Among them extensions where the factors verify some additional hypothesis, but
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also groups containing a finite index subgroups, amalgamated products and HNN
extensions. In those last two cases we recover briefly the main results in [3] that
answer two questions of Pierre de la Harpe (cf. [5]).

5.1. Finite extensions. We consider here extensions with finite quotients.

Proposition 5.1 (icc finite extension). — Let G be a finite extension:
1 −→ K −→ G −→ Qfinite −→ 1

Then G is icc if and only if K is icc and Θ : Q −→ Out(K) is injective.

Proof. — On the one hand, if G is icc, then necessarily K is icc; for suppose on
the contrary that ∃ k ∈ K \ {1} such that CK(k) has finite index in K; since K has
finite index in G and CK(k) ⊂ CG(k), CG(k) has finite index in G, Gk is finite and
G is not icc. On the other hand, suppose that K is icc; since Q is finite, FC(Q) = Q
so that (see 2nd item in example 2.5), G is icc if and only if Θ : Q −→ Out(K) is
injective. �

Example 5.2. — It follows from Proposition 5.1 and from the 4th item in ex-
ample 2.5 that if Q is finite simple,

– G is icc if and only if K is icc and the extension is not equivalent to K ×Q.
For example let p be a prime integer; a group containing an icc normal subgroup

K with index p is either icc or isomorphic to K × Z/pZ.

5.2. Finite index subgroups. Let H be a finite index subgroup of G and:

H :=
⋂
g∈G

g H g−1

then H is the maximal subgroup of H normal in G and has finite index in G;
let Q = G/H. Denote by ϑ : G −→ Aut(H) the homomorphism defined by
∀g ∈ G,∀ k ∈ H, ϑ(g)(k) = gk.

Proposition 5.3 (finite index subgroup and icc). — Let G be a group, H a
finite index subgroup of G and ϑ : G −→ Aut(H) as above; it induces Θ : Q −→
Out(H). Then:

G is icc
⇐⇒ H is icc and Θ : Q −→ Out(H) is injective,
⇐⇒ H is icc and ∀ g ∈ G \H with a finite order, ϑ(g) is not the identity
⇐⇒ H is icc and ∀ g ∈ G \H with a finite order, ϑ(g) is not inner.

Proof. — First note that every finite index subgroup in an icc group is icc; for
suppose that H is a finite index subgroup of G and that H is not icc: there exists
h ∈ H \ {1} with Hh finite, hence CH(h) has finite index in H, and since H has
finite index in G and CG(h) ⊃ CH(h), CG(h) has a finite index in G and G is not
icc.

Now suppose that H is icc, so that H is icc; applying proposition 5.1 to the
extension of H by Q one obtains the first assumption. In particular, if G is icc,
then ∀ g ∈ G \H, ϑ(g) is not inner, therefore in particular ϑ(g) 6= Id.

Now suppose that G is not icc, necessarily there exist g ∈ G \H and k ∈ H such
that ∀x ∈ H, π(g)(x) = kx. Let ω = g k−1, ω ∈ G \ H and ϑ(ω) is the identity.
Since H has a finite index in G, there exists n > 1 such that ωn ∈ H. Since H
is icc, necessarily ωn = 1. But let g ∈ G \H such that gn = 1 and ∃ k ∈ H with
∀x ∈ H, ϑ(g)(x) = kx and let u = gk−1. Then ϑ(u) is the identity on H and
un = gnk−n = k−n; necessarily un = 1 for un has a finite conjugacy class lying in
H. This proves the last two assumptions. �

Example 5.4. — Virtually nilpotent groups are not icc, since nilpotent groups
have non-trivial center (Theorem 5.34, [10]). By a celebrated theorem of Gromov,
finitely generated groups with polynomial growth are not icc.
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Corollary 5.5. — If G \H contains no torsion element (in particular, when
G is torsion-free), then G is icc if and only if H is icc.

5.3. Extensions with an Abelian factor. We consider here the cases of exten-
sions where either the kernel or the quotient is an Abelian group.

Proposition 5.6 (icc extension of Abelian group). — Let G 6= {1} be an ex-
tension:

1 −→ KAbelian −→ G −→ Q −→ 1
and θ : Q −→ Aut(K) be the associated homomorphism.

Then G is icc if and only if both:
(i) FCG(K) = {1},
(ii) the restricted homomorphism θ : FC(Q) −→ Aut(K) is injective.

Proof. — Since Inn(K) = {1} the coupling Θ : Q −→ Out(K) defines a ho-
momorphism θ : Q −→ Aut(K). Given u ∈ K, Gu coincides with the θ(Q)-orbit
of u. Clearly if either (i) or (ii) fails then G is not icc. Conversely suppose G is
not icc, and let u 6= 1 with Gu finite. If u ∈ K then (i) fails. If u ∈ G \ K then
let q = π(u); necessarily q ∈ FC(Q) \ {1}. Let K0 = K ∩ CG(u), it has finite
index in K and θ(q) restricts to the identity on K0. If K0 6= K, let v ∈ K \ K0
and w = [v, u]. Then w ∈ K, w 6= 1 and Gw is finite since its centralizer contains
CG(u) ∩ v CG(u) v−1 which has finite index in G. Hence either (i) fails or θ(q) is
the identity and consequently (ii) does not hold. �

Example 5.7. — Consider ametabelian groupG 6= {1}, i.e. whose derived group
[G,G] is Abelian, and Gab = G/[G,G]. Then G is icc if and only if θ : Gab −→
Aut([G,G]) is injective and [G,G] \ {1} contains only infinite θ(Gab)-orbits, if and
only if [G,G] \ {1} contains only infinite θ(Gab)-orbits and [G,G] is a maximal
Abelian subgroup (see also example below).

When the quotient is Abelian, Theorem 2.3 becomes:

Proposition 5.8 (icc extension by Abelian). — Let G 6= {1} be a group which
decomposes as an extension by an Abelian group with associated coupling Θ :
Q −→ Out(K):

1 −→ K −→ G
π−→ Q Abelian −→ 1

1) Then G is icc if and only if:
(i) FCG(K) = {1}, and
(ii) Ξ : ker Θ −→ H1(Q,Z(K)) is injective.

if and only if (i) holds and:
(ii′) G is centerless

2) In case Q is moreover infinite cyclic, then G is icc if and only if (i) holds and:
(ii′′) Θ : Q −→ Out(K) is injective.

Proof. — Since Q is Abelian one has FC(Q) = Q and CQ(FC(Q)) = Q. In
particular Proposition 2.7 applies and one obtains that conditions (i) and (ii) are
necessary and sufficient for G to be icc.

If condition (ii′) does not hold clearly G is not icc. Now suppose that conditions
(i) holds while G is not icc; it suffices to prove that condition (ii′) fails. With
Theorem 2.3 there exists q ∈ ker Θ\{1} such that [q] = 0 in H1(CQ(q), Z(K)), and
with Lemma 2.12, there exists ω ∈ G \ K with CG(ω) = π−1(Q) = G, therefore
Z(G) is non-empty. This proves that conditions (i) and (ii′) are necessary and
sufficient for G to be icc.

In case Q is infinite cyclic it is sufficient to show that the non-injectivity of Θ
implies that G is not icc. Suppose Θ is non-injective; let t be a generator of Z,
then there exists n ∈ Z and k ∈ K such that ∀x ∈ K, tnx t−n = k x k−1. Hence
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CG(k−1t
n) contains K and t

n, and therefore, has a finite index in G; G is not
icc. �

Example 5.9. — Let G be a non-perfect group, i.e. whose derived group [G,G]
is a proper subgroup (in particular, when G is solvable); let Gab = G/[G,G]. If G
is not Abelian, it decomposes as an extension with kernel [G,G]; let Θ : Gab −→
Out([G,G]) be the associated coupling. Then G is icc if and only if condition (i) of
Theorem 2.3 holds and Ξ : ker Θ −→ H1(Gab, Z([G,G])) is injective, if and only if
condition (i) holds and G is centerless. If G is Abelian obviously G is not icc.
5.4. In case the kernel is hyperbolic. For definition and basic facts upon hy-
perbolic groups, we refer the reader to [2].

Proposition 5.10 (icc hyperbolic group). — Let G be a hyperbolic group; then
G is icc if and only if G is non-elementary and does not contain a non-trivial finite
characteristic (respectively normal) subgroup.

Proof. — If G is elementary, i.e. either finite or virtually Z, or if G contains a
non-trivial finite normal (in particular characteristic) subgroup, then clearly G is
not icc. Conversely suppose that G is non-elementary and not icc. Since in hyper-
bolic groups infinite order elements have virtually cyclic centralizers (cf. Corollary
7.2, [2]), FC(G) is periodic. Since hyperbolic groups contain finitely many conju-
gacy classes of torsion elements (cf. Lemma 3.5 in [2]), FC(G) is finite and the
conclusion holds. �

Proposition 5.11 (icc extension of hyperbolic group). — Let G be a group
extension:

1 −→ Khyperbolic −→ G −→ Q −→ 1
with K 6= {1}. Then G is icc if and only if both:

(i) K is icc
(ii) Φ : FC(Q) −→ Out(K) is injective.
Proof. — According to Theorem 2.3 when conditions (i) and (ii) hold G is icc.

Conversely suppose that G is icc. Necessarily, K is non-elementary for otherwise
K would be finite or would contain a characteristic infinite cyclic subgroup, which
with Theorem 2.3.(i) and Proposition 1.1 would contradict that G is icc. Now a
non-elementary hyperbolic group has a finite center (follows from Corollary 7.2,
[2]). Necessarily, Z(K) = {1} for otherwise as above G would not be icc. Therefore
(see first item in example 2.5) Φ is injective –condition (ii) holds– and condition
(i) of Theorem 2.3 holds. By applying proposition 5.10, K not icc would imply
condition (i) of Theorem 2.3; hence K is icc: condition (i) also holds. �

5.5. HNN extensions. Let A be a non-trivial group with subgroups C,C ′ and let
ϕ : C −→ C ′ be an isomorphism. Let G := A∗ϕ be the HNN extension ([7]):

G ' 〈A, t | ∀ c ∈ C, t c t−1 = ϕ(c)〉 .
It is said to be degenerate when A = C = C ′ and non-degenerate otherwise.

Let C̃ be the largest subgroup of C ∩ C ′ normal in G:
C0 =

⋂
a∈A aCa

−1 ∩
⋂
a∈A aC

′a−1; Ĉk+1 = Ck ∩ φ(Ck) ∩ φ−1(Ck);
Ck+1 =

⋂
a∈A aĈk+1a

−1; C̃ =
⋂
k∈N Ck.

Consider the epimorphism π : G −→ Z such that A ⊂ kerπ and π(t) generates Z,
and let K := kerπ so that G decomposes as a split extension:

1 −→ K −→ G
π−→ Z −→ 1

and let θ : Z −→ Aut(K) be the associated homomorphism: ∀x ∈ K, θ(x) = t x t−1;
it induces the coupling Θ : Z −→ Out(K). When the HNN extension is degenerate,
K = A = C̃.
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Proposition 5.12 (icc HNN extensions). — Let G = A∗ϕ be an HNN exten-
sion.
• If the HNN extension is non-degenerate. Then G is icc if and only if:

(i) FCG(C̃) = {1}.
• If the HNN extension is degenerate. Then G is icc if and only both (i) holds and

(ii) the homomorphism Θ : Z −→ Out(A) is injective.

Proof. — If the HNN extension is degenerate: C = C ′ = A then kerπ = A and
G is an extension of A by Z. In such case, Proposition 5.8(2) applies: G is icc if
and only if Theorem 2.3(i) holds and Θ is injective. The conclusion holds

If the HNN extension is non-degenerate. We suppose in the following that,
without loss of generality, C is a proper subgroup of A.

Applications of the Britton’s Lemma ([7]) allow to prove the two following facts:
a) The homomorphism Θ is injective. Suppose on the contrary that there exists

n ∈ N∗ and k ∈ K such that ∀x ∈ K, tnx t−n = k x k−1. Let α ∈ A \C; tnα t−n is
reduced so that k 6∈ A, k has reduced form:

k = k0t
ε1k1 · · · tεpkp with k0, ki ∈ A, εi = ±1, ∀ i = 1, . . . , p

for some p > n. On the one hand, since tnk t−n = k, necessarily ε1 = −1 or εp = 1;
on the other hand since t−nk tn = k, necessarily ε1 = 1 or εp = −1; it follows that
ε1 = εp = ±1. If ε1 = εp = 1 then k α k−1 is also reduced and tn α t−n = k α k−1

implies tn ∈ kA which cannot occur since tn 6∈ K. If ε1 = εp = −1: similarly
t−nα tn = k−1αk; if α ∈ C ′ the right term is reduced while the left term is not
which contradicts that p > n; if α 6∈ C ′ the same argument as before leads to a
contradiction.

b) θ(Z) has only infinite orbits in K \ C ∩ C ′. Suppose on the contrary that
there exists k ∈ K \ C ∩ C ′ with a finite θ(Z)-orbit. Then k ∈ K \ A, for suppose
without loss of generality that k ∈ A \ C, then {tn k t−n ; n ∈ N} is infinite and
contained in the θ(Q)-orbit of k. Hence k has reduced form:

k = k0t
ε1k1 · · · tεpkp with k0, ki ∈ A, εi = ±1, ∀ i = 1, . . . , p

for some p > 1. Necessarily ε1 = εp for otherwise the θ(Z)-orbit of k would contain
the infinite set {tε1 n k tεp n ;n ∈ N}, so suppose without loss of generality that
ε1 = εp = −1. An immediate induction shows that indeed ∀ i = 1, . . . , p, εi = −1.
This leads to a contradiction since k ∈ K implies that

∑p
i=1 εi = 0.

By applying Proposition 5.8(2) with a) one obtains that G is icc if and only
if FCG(K) = {1}. But with b) FCG(K) ⊂ C ∩ C ′, and since C̃ is the largest
subgroup of C ∩ C ′ normal in G, FCG(K) ⊂ C̃. Hence condition FCG(K) = {1}
becomes here FCG(C̃) = {1}; this proves the result. �

Example 5.13. — Consider the Baumslag-Solitar groupBS(m,n) = 〈a, t | tamt−1 =
an〉. Then G is icc if and only if m 6= ±n.

5.6. Amalgamated product. In this section let A,B be groups, C,C ′ proper
subgroups respectively of A and B, ϕ : C −→ C ′ an isomorphism and consider the
amalgamated product (cf. [7]) G = A∗CB = 〈A,B | ∀ c ∈ C, c = ϕ(c)〉. It is said to
be degenerate when C,C ′ have index 2 respectively in A and B, and non-degenerate
otherwise. In the following we identify C with a subgroup both of A and B.

Denote by:

C̃A =
⋂
a∈A

aC a−1, C̃B =
⋂
b∈B

bC b−1, C̃ = C̃A ∩ C̃B

C̃ is the largest subgroups of C normal in G.

Proposition 5.14 (icc amalgams). — Let G = A ∗C B be a non-trivial amal-
gamated product.
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• In case the amalgam is non-degenerate: G is icc if and only if:
(i) FCG(C̃) = {1}.

• In case the amalgam is degenerate: here C̃ = C andG decomposes as an extension:

1 −→ C −→ G −→ Z/2Z ∗ Z/2Z −→ 1

and G is icc if and only if both (i) holds and:
(ii) the associated coupling Θ : Z/2Z ∗ Z/2Z −→ Out(C) is injective.

Proof. — Applications of the normal form theorem (cf. [7]) allow to prove the
following facts:

a) Every element of A \ C̃ has an infinite G-conjugacy class. Let a ∈ A \C and
b ∈ B \ C. Then the elements (ab)n a (ab)−n, n ∈ N are pairwise disjoint elements
of Ga, so that Ga is infinite. Now let x ∈ A \ C̃, a conjugate of x lies in (A∪B) \C
so that Gx is infinite.

b) If [A : C] > 2 then every element of G \ (A ∪ B) has an infinite conjugacy
class. Let u ∈ G \ (A ∪ B); up to conjugacy by an element of A ∪ B we suppose
that u has reduced form u = a1b1 · · · anbn for some n ∈ N∗ with a1 ∈ A, b1 ∈ B \C
and ∀ i = 2, . . . , n: ai ∈ A \ C and bi ∈ B \ C. Let b ∈ B \ C and a ∈ A \ C such
that a and a−1

1 lie in different cosets of A/C. Then the elements (ba)n u (ba)−n for
n ∈ N are pairwise distinct elements in Gu, so that Gu is infinite.

We now distinguish two cases:
First case: the degenerate case, [A : C] = [B : C] = 2. In such a case, C = C̃

is normal in A,B and G. In case C = {1}, G = Z/2Z ∗ Z/2Z is not icc and
Θ : Z/2Z ∗ Z/2Z −→ Out(C) is non-injective; otherwise G splits as:

1 −→ C −→ A ∗C B −→ Z/2Z ∗ Z/2Z −→ 1 ,

FC(Z/2Z ∗ Z/2Z) consists in the characteristic infinite cyclic subgroup. Note that
Θ : Z/2Z ∗ Z/2Z −→ Out(C) is injective if and only if it is once restricted to
FC(Z/2Z∗Z/2Z). Note also that whenever Θ is non-injective, G is not icc, since any
element 6= 1 of FC(Z/2Z∗Z/2Z) generates a finite index subgroup of Z/2Z∗Z/2Z.
Together with a) and Theorem 2.3, one obtains that G is icc if and only conditions
(i) and (ii) hold.

Second case: the non-degenerate case. If C̃ = {1} then on the one hand
FCG(C̃) = {1} and on the other hand the facts a) and b) above prove that G
is icc.
If C̃ 6= {1}, denote A = A/C̃, B = B/C̃ and C = C/C̃; G decomposes as an
extension:

1 −→ C̃ −→ A ∗C B −→ A ∗C B −→ 1

and with the Correspondence Theorem (Theorem 2.28, [10]), on the one hand,
[A : C] = [A : C] and [B : C] = [B : C] and on the other C does not contain any
non-trivial subgroup normal in A ∗C B. With the facts a) and b) proved above,
A ∗C B is icc. Therefore by applying Theorem 2.3 together with a), G is icc if and
only if FC(C̃) = {1}. �

Example 5.15. — A free product of non-trivial groups is either icc or an infinite
dihedral group Z/2Z ∗ Z/2Z.
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