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FORCING THE TRUTH OF A WEAK FORM
OF SCHANUEL’S CONJECTURE

MATTEO VIALE

Abstract. Schanuel’s conjecture states that the transcendence degree over Q of the
2n-tuple (λ1, . . . , λn, eλ1 , . . . , eλn ) is at least n for all λ1, . . . , λn ∈ C which are linearly
independent over Q; if true it would settle a great number of elementary open problems in
number theory, among which the transcendence of e over π.

Wilkie [11], and Kirby [4, Theorem 1.2] have proved that there exists a smallest countable
algebraically and exponentially closed subfield K of C such that Schanuel’s conjecture holds
relative to K (i.e. modulo the trivial counterexamples, Q can be replaced by K in the
statement of Schanuel’s conjecture). We prove a slightly weaker result (i.e. that there exists
such a countable field K without specifying that there is a smallest such) using the forcing
method and Shoenfield’s absoluteness theorem.

This result suggests that forcing can be a useful tool to prove theorems (rather than
independence results) and to tackle problems in domains which are apparently quite far
apart from set theory.

A brief introduction

We want to give an example of how we might use forcing to study a variety of
expansions of the complex (or real) numbers enriched by arbitrary Borel predicates,
still maintaining certain “tameness” properties of the theory of these expansions.
We clarify what we intend by “tameness” as follows: in contrast with what happens
for example with o-minimality in the case of real closed fields, we do not have to
bother much with the complexity of the predicate P we wish to add to the real
numbers (we can allow P to be an arbitrary Borel predicate), but we pay a price
reducing significantly the variety of elementary superstructures (M,PM ) for which
we are able to lift P to PM so that (R, P ) ≺ (M,PM ) and for which we are able
to use the forcing method to say something significant on the first order theory of
(M,PM ). Nonetheless the family of superstructures M for which this is possible
is still a large class, as we can combine (Woodin and) Shoenfield’s absoluteness for
the theory of projective sets of reals with a duality theorem relating certain spaces
of functions to forcing constructions, to obtain the following1:

Theorem 1 (V. and Vaccaro [10]). — Let X be an extremally disconnected
(i.e. such that the closure of open sets is open) compact Hausdorff space.

Let C+(X) be the space of continuous functions f : X → S2 = C ∪ {∞} such
that the preimage of ∞ is nowhere dense (S2 is the one point compactification of
C).

For any p ∈ X, let C+(X)/p be the ring of germs in p of functions in C+(X).
Given any Borel predicate R on Cn, define a predicate RX/p ⊆ (C+(X)/p)n by the

Math. classification: 03E57, 03C60, 11U99.
Keywords: Schanuel’s conjecture, forcing and generic absoluteness.
1Theorem 1 generalizes results obtained by Jech [3] and Ozawa [8], we refer to [10] for further

details on the relations between Theorem 1 and their works.
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rule RX/p([f1], . . . [fn]) holds if there is an open neighboorhood U of p such that
R(f1(x), . . . , fn(x)) holds for a comeager2 set of x ∈ U . Then3

(C, R) ≺Σ2 (C+(X)/p,RX/p).

Moreover if we assume the existence of class many Woodin cardinals we get that

(C, R) ≺ (C+(X)/p,RX/p).

It turns out that the above spaces of functions are intrinsically intertwined with
the forcing method: they provide an equivalent description of the forcing names for
complex numbers for the notion of forcing given by the non-empty clopen subsets
of X. Moreover these spaces are universal among the spaces of the form C+(Y )
with Y compact Hausdorff, in the sense that for any such Y there is an isometric
∗-homomorphism of the unital C∗-algebra C(Y ) into a a C∗-algebra of the form
C(X) with X compact and extremely disconnected; this homomorphism extends
to a ∗-monomorphism of the ring C+(Y ) into the ring C+(X) (we refer the reader
to [9, Chapter 4] for more details).

Playing with the choice of the compact space X and of the Borel predicate R
we can cook up spaces in which it is possible to compute the solution of certain
projective statements. Using the elementarity of these structures with respect to
the standard complex numbers, we can conclude that the solution we computed in
these expansions is the correct solution. This is exactly what we plan to do in the
following for a weakening of the well known Schanuel’s conjecture.

1. Main result

For a vector ~v = (v1, . . . , vn) and a function E we let ~v(c) = (v1(c), . . . , vn(c))
if each vi is a function and c is in the domain. E(~v) = (E(v1), . . . , E(vn)) if
each vi is in the domain of E. We also feel free (unless we feel this can generate
misunderstandings) to confuse a vector ~v = (v1, . . . , vn) with the finite set of its
elements {v1, . . . , vn}.

Definition 1.1. — Given fields K ⊆ F of characteristic 0 and an integral
domain Z ⊆ K, let Z̄ denote the field of fractions of Z. Fix {λ1, . . . , λn} ⊆ F .
Then:

• LdimZ̄(λ1, . . . , λn) denotes the Z̄-linear dimension of the Z̄-subspace V of
F spanned by {λ1, . . . , λn}.

• LdimZ̄(λ1, . . . , λn/K) is the Z̄-codimension of K in the Z̄-vector space
K + V .

• TrdgK(λ1, . . . , λn) is the transcendence degree over K of the ring

K[λ1, . . . , λn] ⊂ F,

i.e. the largest size of a subset A of {λ1, . . . , λn} such that no polynomial
with coefficients in K and |A|-many variables vanishes on the elements of
the subset.

2A ⊆ X is meager if it is the union of countably many nowhere dense sets. A is comeager in
U if U \A is meager.

3Hidden in the conclusion of the theorem is the statement that RX/p is a well defined relation
for each p ∈ X.
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• Let (F,+, ·, 0, 1) be a field and E : F → F ∗ be an homomorphism of the
additive group (F,+) to the multiplicative group (F ∗, ·). Let

Z(F ) = {a ∈ F : ∀x (E(x) = 1→ E(ax) = 1)}.
Then Z(F ) is a ring.

• Given a field K with Z(F ) ⊆ K ⊆ F , let Z̄ denote the field of fractions of
Z(F ). The Ax character of the pair (E,K) is the function:

ACE,K(~λ) = TrdgK(~λ,E(~λ))− LdimZ̄(~λ/K).
1.1. Exponential fields. We introduce axioms suitable to formulate our results
on the exponential function relative to some algebraically closed field K. Since
we will have to interplay between boolean valued semantics and standard Tarski
semantics, and there are subtle points in the evaluation of function symbols in
boolean valued models we do not want to address in the present paper, we overcome
this problem assuming from now on that we are working always with relational first
order languages. In particular when formally representing a function on a structure
as the extension of a definable set, we will always assume that the formula defining
the function does not contain any function symbol.

Definition 1.2. — Consider a relational language for algebraically closed fields
augmented by predicate symbols for an exponential map E, and for a special sub-
field K.

(F,K,E, ·,+, 0, 1)
is a model of TWSP(K) if it satisfies4:

(1) AC FIELD: F is an algebraically closed field of characteristic 0.
(2) EXP FIELD: The exponential map E : F → F ∗ is a surjective homo-

morphism of the additive group (F,+) to the multiplicative group (F ∗, ·)
with

ker(E) = ω · Z(F ) = {ω · λ : λ ∈ Z(F )}
for some ω ∈ F transcendental over Z(F ) [5, Axioms 2′a, 2′b, Section 1.2].

(3) (K,E)-SP (Schanuel property for (K,E)): K ⊆ F is a field containing
Z(F ) and ACE,K : F<ω → N cannot get negative values and is 0 only on
tuples contained in K.

(Q, exp)-SP is a strengthening of Schanuel’s conjecture: Assume (Q, exp)-SP
holds and λ1, . . . , λn = ~λ are Q-linearly independent. Then either λ1, . . . , λn−1 are
Q-linearly independent modulo Q or λ2, . . . , λn are Q-linearly independent modulo
Q: Otherwise there are s, r ∈ Q and s1, . . . , sn−1, r2, . . . , rn ∈ Q such that s =∑
i=1,...,n−1 siλi and r =

∑
i=2,...,n riλi. Then

s · r =
∑

i=1,...,n−1
r · siλi =

∑
i=2,...,n

s · riλi.

4The axioms we introduce are mostly taken from [5, Section 1.2], specifically axiom (2) corre-
sponds to axioms 2′a and 2′b of [5, Section 1.2], we do not insist on the axiom 2′c, while axiom
(3) is a variation of the axiom 3′ of [5, Section 1.2]. In order to be fully consistent with their
axiomatization the Ax character in axiom (3) should be replaced by the “predimension” function
∆(~λ) = TrdgZ(F )(~λ,E(~λ)/K) − LdimZ(F )(~λ/K). Nonetheless the fields K ⊆ F we will look at
are such that Z(F ) ∪ ker(E) ⊆ K and it can be checked that for these fields ∆(~λ) > ACE,K(~λ).
In our analysis we will focus on the properties of the function ACE,K .
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This shows that ~λ is not a vector of Q-linearly independent numbers. Assume now
that λ1, . . . , λn−1 are Q-linearly independent modulo Q. By (Q, exp)-SP we get
that

TrdgQ(~λ, e~λ) > TrdgQ(λ1, . . . , λn−1, e
λ1 , . . . , eλn−1)

= ACQ,exp(λ1, . . . , λn−1) + LdimQ(λ1, . . . , λn−1/Q)
> LdimQ(λ1, . . . , λn−1/Q) = n− 1,

and we are done.
An exponential field is a pair (F,E) satisfying the field axioms and axiom (2).
Zilber [12] showed that there is a natural axiom system TZilber expanding TWSP(Q)

and axiomatizable in the logic Lω1,ω(Q) (where Q stands for the quantifier for
uncountably many elements) such that for each uncountable cardinal κ there is
exactly one field B and one exponential function E : B → B∗ with ker(E) =
ω · Z for some ω ∈ B transcendental over Q and such that (B,Q, E,+, 0, 1) is a
standard model of TZilber. Roughly TZilber extends TWSP(Q) requiring that Axiom (3)
is replaced by the full Schanuel conjecture5 stating that

TrdgQ(~λ,E(~λ)) > LdimQ(~λ) for all ~λ.

Furthermore TZilber requires two other sorts of axioms requiring the existence of
generic points for certain kind of irreducible varieties (the so-called normal or rotund
varieties) and specifying further properties of these generic points (see MR2102856
(2006a:03051) for a short account of the axiom system). However in the present
paper we are not interested in this other part of Zilber’s axiomatization of the
theory of exponential fields. Zilber conjectures that (C,Q, ex,+, ·) is a model of
TZilber.

We give a proof based on forcing and generic absoluteness of the following the-
orem:

Theorem 1.3 (Kirby [4], Wilkie [11]). — There exists a countable (algebraically
and exponentially closed) field K0 ⊆ C such that (C,K0, e

x,+, ·) is a model of
TWSP(K0).

Essentially what we have to prove is the following:
There exists a countable (algebraically and exponentially closed)
field K0 ⊆ C such that

ACK0,exp(~λ) > 0

for all ~λ ∈ C<N (where exp(λ) = eλ), with equality holding only if
~λ ⊆ K0.

The proof is articulated in three steps and runs as follows:

5Whenever a field K ⊆ C is closed with respect to the graph of the exponential function,
the formal analogue of Schanuel’s conjecture obtained replacing all occurrences of Q by K in
its statement is false (i.e. the statement asserting that TrdgK(~λ, e~λ) > LdimK(~λ) for all ~λ). A
counterexample is given by TrdgK(1, e) = 0 < 1 = LdimK(1). The content of Theorem 1.3 below
is that in essence this is the unique relevant countexample for certain subfields K of C. This is
the reason why we chose to formulate Schanuel’s property for fields K in the form of axiom 3.

http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=2102856&loc=fromrevtext
http://www.ams.org/mathscinet/search/publdoc.html?r=1&pg1=CNO&s1=2102856&loc=fromrevtext


FORCING THE TRUTH OF A WEAK FORM OF SCHANUEL’S CONJECTURE 63

Step (1). The above statement is expressible by the lightface Σ1
2-formula

WSP ≡ ∃f ∈CN(ran(f) = K0 is a field ∧∀~λ∈C<N TrdgK0(~λ, e~λ) > LdimQ(~λ/K0)),
since it is a rather straightforward calculation to check that the formulae

φ(f) ≡ (f ∈ CN ∧ ran(f) = K0 is a field)
and

WSP(~λ, f) ≡ φ(f) ∧ (~λ ∈ C<N ∧ TrdgK0(~λ, e~λ) > LdimQ(~λ/K0))
are Borel statements definable over the parameters f,~λ which require only to quan-
tify over the countable sets f , N, Q. It is a classical result of set theory (known
as Shoenfield’s absoluteness) that any Σ1

2-property known to hold in some forcing
extension is actually true. So in order to establish the theorem it is enough to
prove the above formula to be consistent by means of forcing, i.e. to prove that
JWSPKB = 1B in the boolean valued model for set theory V B for some complete
boolean algebra B.

Step (2). The second step relies on the following observation: whenever B is any
complete boolean algebra and V is the universe of sets (i.e. the standard model of
ZFC), the family of B-names for complex numbers in the boolean valued model V B

(which we denote by Ċ) “corresponds” to the space of continuous functions
C+(St(B)) = {f : St(B)→ S2 : f is continuous and f−1[{∞}] is nowhere dense},
where S2 = C ∪ {∞} is the one point compactification of C with the euclidean
topology, and St(B) is the space of ultrafilters on St(B) (equivalently of ring ho-
momorphisms of the boolean ring B onto the ring Z2). More precisely there is a
natural embedding of the structure C+(St(B)) into the boolean valued model V B

which identifies C+(St(B)) with

Ċ = {τ ∈ V B : Jτ is a complex numberKB = 1B}.
Various facets of this identification are common knowledge for the set theory schol-
ars, and this isomorphism has been proved in full details by Jech [3] and Ozawa [8]
for C+(St(B)). An account of this correspondence which is closer to the approach
taken in the current papers and is more general than what is outlined in Jech’s and
Ozawa’s works can be found in [10].

The reader should be aware that these spaces of functions may not be ex-
otic: for example if MALG is the complete boolean algebra given by Lebesgue-
measurable sets modulo Lebesgue null sets, C(St(MALG)) is isometric to L∞(R)
via the Gelfand-transform of the C∗-algebra L∞(R) and consequently St(MALG)
is homeomorphic to the space of characters of L∞(R) endowed with the weak-∗
topology inherited from the dual of L∞(R).

What is more important to us is that for all complete boolean algebras B and for
all G ∈ St(B) the space of germs given by C+(St(B))/G is an algebraically closed
field to which any “natural” (i.e. for example Borel) relation defined on Cn can be
extended: for example the exponential function can be extended to C+(St(B))/G
by the map [f ]G 7→ [ef ]G. Moreover we can identify C inside C+(St(B))/G as the
subfield given by germs of constant functions. We invite the reader to skim through
[10] to get a thorough presentation of the properties of the spaces C+(St(B)) seen
as B-valued extensions of the complex numbers.
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In this paper we are also interested in canonical subfields of C+(St(B))/G which
give the correct lift to C+(St(B))/G of Q,C, these are respectively:

• The field Č/G given by germs of locally constant functions, i.e. functions
f in C+(St(B)) such that⋃

{f−1[{λ}] : λ ∈ C, f−1[{λ}] is clopen}

is an open dense subset of St(B).
• The subfield Q̌/G (respectively the subring Ž/G) of Č/G given by germs
of locally constant functions with range contained in Q (respectively in Z).

These rings corresponds in the forcing terminology of set theory respectively: to
the B-names for complex numbers of the ground model, to the B-names for rational
numbers of the ground model, to the B-names for integer numbers of the ground
model. This characterization will play an important role in our proof.

The second step of our proof will show that if G ∈ St(B) and B is a complete
boolean algebra, the structure

(C+(St(B))/G, Č/G, [f ]G/[g]G 7→ [ef/g]G, . . . , [0]G, [1]G)

is a model of TWSP(Č/G) for any G ∈ St(B).
The key arguments in this second step do not require any specific training in set

theory and needs just a certain amount of familiarity with first order logic, the basic
properties of algebraic varieties, and with the combinatorics of forcing as expressed
in terms of complete atomless boolean algebras. In particular there is no need to
be acquainted with forcing or set theory to follow the proof of the above results
(such a familiarity will nonetheless be of great help to follow the arguments).

The basic ideas for the proof are the following:
(A) For any [~f ]G = ([f1]G, . . . , [fn]G) ∈ (C+(St(B))/G)n, the variety

V (ĪG(~f, e~f ), Č/G)

given by the 0-set of polynomials in Č/G[~x, ~y] vanishing at [~f, e~f ]G in
(C+(St(B))/G)2n has dimension equal to the transcendence degree of the
tuple [~f, e~f ]G over Č/G. To compute the Ax Character for [~f ]G over Č/G
it is enough to study the algebraic dimension of this variety in (Č/G)2n.

(B) For a dense open set of G, the ideal ĪG(~f, e~f ) is generated by polynomials
p1, . . . , pk with complex coefficients, consequently the algebraic dimension
of V (ĪG(~f, e~f ), Č/G)) is equal to the algebraic dimension of the complex
variety V (p1, . . . , pk,C) given by points in C2n on which all the pj vanish.

(C) Let [~f ]G = ([f1]G, . . . , [fn]G) be given by nowhere locally constant func-
tions which are Q̌/G-linearly independent modulo Č/G, by (B) above the
transcendence degree of the 2n-tuple [~f, e~f ]G over Č/G is equal to the
transcendence degree of the same 2n-tuple over C (seen as a subfield of
C+(St(B))/G).

(D) For an n-tuple [~f ]G as above we can show that the transcendence degree over
C of the 2n-tuple [~f, e~f ]G is at least n+1 as follows: we can find φ1, . . . , φn
analytic functions from ∆ = {z ∈ C : |z| < 1} to C linearly independent
over Q modulo C with the following property: Let [φ] denote the germ of φ
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at 0. Then the map [φi] 7→ [fi]G, [eφi ] 7→ [efi ]G extends to an isomorphism
of the corresponding finitely generated subfields. The desired conclusion
follows, since the field of germs at 0 of analytic functions from some open
neighborhood U of 0 to C is a field to which Ax’s theorem on Schanuel’s
property for functions fields apply (i.e. Theorem 2.1 below).

Step (3). The third step of our paper combines steps (1) and (2) as follows: We
choose a boolean algebra B such that JČ is countable KB = 1B in the boolean valued
model V B (for example we can choose B to be the boolean algebra of regular open
subsets of CN where C is endowed with the discrete topology). In particular in V B

we will have that
JČ is countable as witnessed by ḟ ∧WSP(ḟ , Ċ)KB = 1B,

i.e. JWSPKB = 1B holds in V B. By the results of step (1), we thus get that WSP
holds in V concluding the proof of Theorem 1.3.

We will not expand any further on step (1), the core of the paper concerns
the proof of the results in step (2), we add some more comments in the last part
regarding step (3). We try (as much as possible) to make the arguments in step
(2) accessible to persons which are not acquainted with the forcing techniques and
more generally with logic. For this reason we shall limit the use of techniques which
are specific of set theory just to the last step.

2. Step (2)

2.1. Results from complex analysis and algebraic geometry. We need just
classical results in the field and we use as a general reference text [7], though some of
the results we need may not be covered in that textbook. We will use the following
definitions and theorems:

(1) Ax’s theorem on Schanuel’s property. The following corollary of Ax’s
theorem [1, Theorem 3]:

Theorem 2.1. — Assume (F,E) is an exponential field which is al-
gebraically closed. Let D : F → F be a derivation (i.e. D(f + g) =
D(f) + D(g) and D(fg) = D(f)g + fD(g) for all f, g ∈ F ) such that
D(E(f)) = D(f) · E(f) for all f ∈ F .

Then for all ~f = (f1, . . . , fn) ∈ Fn which are Q-linearly independent
modulo ker(D) we have that

Trdgker(D)(f1, . . . , fn, E(f1), . . . , E(fn)) > n+ 1.

(2) The field of fractions OΩ of germs at 0 of analytic functions (i.e. defined
on some open neighborhood U ⊆ C of 0 by a convergent power series)
f : U → C with differential D([f ]/[g]) = [f ′g−g′f ]

[g2] satisfies the assumptions
of Ax’s theorem with ker(D) = C (identifying C as the subfield of OΩ given
by germs of constant functions).

(3) Algebraic dimension of affine irreducible algebraic varieties. Any
ideal I ⊆ K[x1, . . . , xm] with K a field is finitely generated.

Given L a field containing all the coefficients of a set of generators
p1, . . . , pm for I, we let IL denote the ideal generated by p1, . . . , pm in
L[x1, . . . , xm].
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• Any irreducible affine algebraic variety in Kn with K algebraically
closed field is of the form

V (I,K) =
{
~λ ∈ Kn : p(~λ) = 0∀p(~x) ∈ I

}
with I a finitely generated prime ideal in K[x1, . . . , xn].
• Given an ideal I ⊆ K[x1, . . . , xn], and L ⊆ K field containing all the
coefficients of the polynomials in a set of generators for I,

~λ ∈ V (I,K) is an L-generic point for V (I,K) if any poly-
nomial in L[x1, . . . , xn] is in IL if and only if it vanishes
on ~λ.

• The algebraic dimension of the irreducible variety V (I,K) can be com-
puted as follows: fix some countable field L ⊆ K finitely generated and
containing the coefficients of a set of generators for I. Fix ~λ ∈ V (I,K)
an L-generic point (~λ exists since L is countable, by a simple Baire
category argument). The algebraic dimension of V (I,K) is the num-
ber TrdgL(~λ) and does not depend neither on the choice of L nor on
that of K in the following sense: Assume L1 ⊆ K1 are any other fields
(L1 need not be countable) such that L1 contains the coefficients of a
set of generators for I and K1 is algebraically closed, and ~λ1 ∈ Kn

1 is
an L1-generic point for IL1 , then TrdgL(~λ) = TrdgL1(~λ1).

(4) A quasi affine variety is the intersection of an affine variety with a Zariski-
open set. The set of regular (or smooth) points of an irreducible quasi-affine
variety on Cn is an open non-empty Zariski subset of the variety, and any
generic point of the variety is smooth (recall that for a 0-set of a finite
family of differentiable functions U ⊆ Cn, ~a ∈ U is a smooth point if the
rank of the Jacobian of the finite set of functions defining U attains its
maximum in ~a).

(5) Relations between algebraic affine varieties and analytic mani-
folds. Any quasi-affine and smooth irreducible variety contained in Cn
(i.e. a Zariski open set of an irreducible algebraic variety in Cn contained
in the non-singular points of the variety) is also an analytic manifold and
its algebraic dimension is equal to its dimension as an analytic manifold
(i.e. the unique n such that some open neighborhood of the manifold is
homeomorphic to Cn).

(6) Analytic implicit function theorem. Assume U is the zero-set of a
finite family of analytic functions defined on some open subset of Ck in the
Euclidean topology. Let ~a ∈ U be a smooth point of U . Then for some
unique n, there is an analytic, open (in the Euclidean topology on U) map
φ : Cn → U with ~a in the target of φ.

(7) Analytic paths inside an analytic manifold of positive dimension.
Let V ⊆ Ck be the injective image of an analytic map φ : Cn → Ck. Then
any family of m distinct points {q0, . . . , qm−1} in V can be connected by an
analytic path i.e. an analytic map ~φ : ∆ → V such that {q0, . . . , qm−1} ⊆
ran(~φ), ~φ(0) = q0. We sketch a proof since we are not able to give a proper
reference other than wikipedia:Polynomial-interpolation:

https://en.wikipedia.org/wiki/Polynomial_interpolation
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Let φ : Cn → D be analytic and injective. Let φ(~xj) = qj for all j =
0, . . . ,m−1. Let ~xj = (xj0, . . . , x

j
n−1) By the interpolation theorem, we can

find unique polynomials pl(x) ∈ C[x] of degree m such that pl( jm ) = xjl for
all l = 0, . . . , n − 1 and j = 0, . . . ,m − 1. Then ψ : ∆ → V mapping a 7→
φ(p0(a), . . . pn−1(a)) is analytic and maps j

m to qj for all j = 0, . . . ,m− 1.

2.2. Forcing on C+(St(B)). We refer the reader to [9, Chapters 2, 3, 4] for a
detailed account on the material presented here.

Given a topological space (X, τ), an open set A ∈ τ is regular open if A =
Int (Cl (A)), where for any B ⊆ X, Int (B) is the largest open set contained in B
and Cl (B) the smallest closed set containing B. We define Reg (A) = Int (Cl (A)).
Recall that the algebra of regular open sets of a topological space (X, τ) is always
a complete boolean algebra with operations:

•
∨
{Ai : i ∈ I} = Reg (

⋃
{Ai : i ∈ I}),

• ¬A = Int (X \Ai),
• A ∧B = A ∩B.
• A topological space (X, τ) is 0-dimensional, if its clopen sets form a base

for τ .
• A compact topological space (X, τ) is extremally (extremely) disconnected
if its algebra of clopen sets CLOP(X) is equal to its algebra of regular open
sets RO(X).

For a boolean algebra B we let St(B) be the Stone space of its ultrafilters with
topology generated by the clopen sets

Nb = {G ∈ St(B) : b ∈ G}.

We remark the following:
• St(B) is a compact 0-dimensional Haussdorf space and any 0-dimensional
compact space (X, τ) is isomorphic to St(CLOP(X)),

• A compact Hausdorff space (X, τ) is extremely disconnected if and only if
its algebra of clopen sets is a complete boolean algebra. In particular St(B)
is extremely disconnected if and only if B = CLOP(St(B)) is complete.

An antichain on a boolean algebra B is a subset A such that a ∧ b = 0B for all
a, b ∈ A, B+ = B \ {0B} is the family of positive elements of B and a dense subset
of B+ is a subset D such that for all b ∈ B+ there is a ∈ D such that a 6B b. In
a complete boolean algebra B any dense subset D of B+ contains an antichain A
such that

∨
A =

∨
D = 1B.

Another key observation on Stone spaces of complete boolean algebras we often
need is the following:

Fact 2.2. — Assume B is a complete atomless boolean algebra, then on its
Stone space St(B):

• N∨
BA

= Cl
(⋃

a∈ANa
)
for all A ⊆ B.

• N∨
BA

=
⋃
a∈ANa for all finite sets A ⊆ B.

• For any infinite antichain A ⊆ B+,
⋃
a∈ANa is properly contained in N∨

BA

as a dense open subset.
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Given a compact extremely disconnected topological space X, we let C+(X) be
the space of continuous functions

f : X → S2 = C ∪ {∞}

(where S2 is seen as the one point compactification of C) with the property that
f−1[{∞}] is a closed nowhere dense subset of X. In this manner we can endow
C+(X) of the structure of a commutative ring of functions with involution let-
ting the operations be defined pointwise on all points whose image is in C and be
undefined on the preimage of ∞. More precisely f + g is the unique continuous
function

h : X → S2

such that h(x) = f(x) + g(x) whenever this makes sense (it makes sense on an
open dense subset of X, since the preimage of the point at infinity under f, g
is closed nowhere dense) and is extended by continuity on the points on which
f(x) + g(x) is undefined: since X is extremely disconnected and compact, any
h which is continuous on a dense open subset of X admits a unique continuous
extension to the whole of X by the rule h(p) = a, where a is the unique element of⋂

{U : U is closed and p ∈ Int
(
f−1[U ]

)
}.

Thus f+g ∈ C+(X) if f, g ∈ C+(X). Similarly we define the other operations. We
take the convention that constant functions are always denoted by their constant
value, and that 0 = 1/∞.

Definition 2.3. — Let G be an ultrafilter on B. For f, g ∈ C+(St(B)) let
[f ]G = [h]G iff for some a ∈ G, f � Na = g � Na.
C+(St(B))/G is the quotient ring of C+(St(B)) by G given by the equivalence

classes [f ]G for f ∈ C+(St(B)).

In the sequel given a vector ~f = (f1, . . . , fn) ∈ C+(St(B))n, b ∈ B, G ∈ St(B):
• [~f ]G is shorthand for ([f1]G, . . . , [fn]G),
• ~f(G) is shorthand for (f1(G), . . . , fn(G)),
• ~f � Nb is shorthand for (f1 � Nb, . . . , fn � Nb),
• For g : C→ C, g(~f) is shorthand for (g ◦ f1, . . . , g ◦ fn).

We also define the following family of rings indexed by positive elements of a
complete boolean algebra:

Definition 2.4. — Let B be a complete boolean algebra and b ∈ B+.
• Čc ⊆ C+(Nc) is the ring of functions f ∈ C+(Nc) which are locally constant

i.e. such that ⋃{
f−1[{λ}] : f−1[{λ}] is clopen

}
is open dense in Nc. Č stands for Č1B .

• Let K be a structure among Q,Z,N, we define Ǩc to be the family of
functions f ∈ Čc such that ran f ⊆ K. Ǩ stands for Ǩ1B .

As a warm-up for the sequel we can already prove the following:

Fact 2.5. — Assume B is a complete boolean algebra. Then:
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(1) (C+(St(B))/G, [f ]G 7→ [ef ]G) and (Č/G, [f ]G 7→ [ef ]G) are exponential
fields with kernel 2π · (Ž/G) for all G ∈ St(B).

(2) Q̌/G is a field for all G ∈ St(B).

Proof. — Left to the reader. Concerning the field structure of C+(St(B))/G, it
is not hard to check that for a non-zero [f ]G ∈ C+(St(B))/G, we can find some
Nb with b ∈ G so that g ∈ C+(Nb) and g · (f � Nb) = 1 in C+(Nb). We can then
extend g arbitrarily to a continuous function in C+(St(B)) out of Nb. The rest is
similar or easier. �

Germs of continuous functions on Stone spaces and forcing. We need to consider
C+(St(B)) as a B-boolean valued model. This is done as follows:

Definition 2.6. — We identify a cba B with the complete boolean algebra of
clopen (regular open) sets of St(B). The equality relation on C+(St(B)) is the map

= : C+(St(B))2 → B
(f, g) 7→ Reg ({H : f(H) = g(H)})

We denote = (f, g) by Jf = gK.
This equality boolean relation satisfies

Jf = gK ∧ Jh = gK 6 Jf = hK

and
Jf = gK = Jg = fK

for all f, g, h.
A forcing relation on C+(St(B)) is a map

R : C+(St(B))n → B

such that

R(f1, . . . , fn) ∧ Jfi = hK 6 R(f1, . . . , fi−1, h, fi+1, . . . , fn)

for all f1, . . . , fn, h.
Let R1, . . . , Rn be forcing relations on C+(St(B))n and φ be a formula in the

language {R1, . . . , Rn}. We define:
• JRi(~f)K = Ri(~f) for all i 6 n,
• Jφ ∧ ψK = JφK ∧ JψK,
• Jφ ∨ ψK = JφK ∨ JψK,
• J¬φK = ¬JφK,
• J∃xφ(x, ~f)K =

∨
{Jφ(g, ~f)K : g ∈ C+(St(B))}.

Given an ultrafilter G on B we make C+(St(B))/G into a structure for the language
{R1, . . . , Rn} by setting

C+(St(B))/G |= Ri/G([~f ]G)

if and only if Ri(~f) ∈ G.

We have the following Theorems:
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Lemma 2.7 (Mixing Lemma). — Assume B is a complete boolean algebra and
A ⊆ B is an antichain. Then for any family {fa : a ∈ A} ⊆ C+(St(B)), there exists
f ∈ C+(St(B)) such that

a 6 Jf = faK
for all a ∈ A.

Sketch of proof. — Let f ∈ C+(St(B)) be the unique function such that
f � N(¬

∨
A) = 0 and f � Na = fa � Na for all a ∈ A.

Check that f is well defined and works. �

Lemma 2.8 (Fullness Lemma). — Suppose R1, . . . , Rn are forcing relations on
C+(St(B))<ω. Then for all formulae φ(x, ~y) in the language {R1, . . . , Rn} and all
~f ∈ C+(St(B))n there exists g ∈ C+(St(B)) such that

J∃xφ(x, ~f)K = Jφ(g, ~f)K.

Sketch of proof. — Find a maximal antichain A among the b satisfying
Jφ(gb, ~f)K > b > 0B for some gb.

Now apply the Mixing Lemma to patch together all the ga for a ∈ A in a g. Check
that

J∃xφ(x, ~f)K = Jφ(g, ~f)K. �

Theorem 2.9 (Cohen’s forcing Theorem). — Let R1, . . . , Rn be forcing rela-
tions on C+(St(B)). Then for all ~f ∈ C+(St(B))n and all formulae φ(~x) in the
language {R1, . . . , Rn}:

(1) C+(St(B))/G |= φ([~f ]G) if and only if Jφ(~f)K ∈ G,
(2) for all a ∈ B the following are equivalent:

(a) Jφ(f1, . . . , fn)K > a,
(b) C+(St(B))/G |= φ([~f ]G) for all G ∈ Na,
(c) C+(St(B))/G |= φ([~f ]G) for densely many G ∈ Na.

Sketch of proof. — Proceed by induction on the complexity of φ using the
Mixing Lemma and the Fullness Lemma to handle the quantifier cases. �

2.3. TWSP(Č/G) holds in C+(St(B))/G.

Theorem 2.10. — Assume B is a cba and G ∈ St(B). Then

ACČ/G,exp /G
([~f ]G) > 0

for all [~f ]G ∈ (C+(St(B))/G)n (where exp /G([f ]G) = [ef ]G), with equality holding
only if [~f ]G ⊆ (Č/G)n.

Before embarking on the proof of the above Theorem, let us show how the forcing
theorem simplifies our task and let us also outline some caveat.

For any b ∈ B we can consider C+(Nb) both as a ring of functions in the usual
sense, or as a boolean valued model on the boolean algebra B � b in which we
consider the sum and product operations as forcing relations, imposing for example
for the sum:

Jf + g = hK = Reg ({H ∈ Nb : f(H) + g(H) = h(H)})
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and similarly for the other field operations. By the forcing theorem, we will get
that JφK = 1B for all field axioms φ expressed in the language with ternary relation
symbols to code the operations, since each C+(St(B))/G is a field for all G ∈ St(B).
Notice in sharp contrast that C+(St(B)) is not a field when we consider it as an
algebraic ring. This outlines a serious distinction between the theory of C+(St(B))
seen as a boolean valued model and its theory seen as an algebraic ring.

Moreover in the sequel we do not work simply with the boolean valued model
C+(St(B)) in the language for fields. We will consider it as a boolean valued model
in the language with predicate symbols for the relations and operations Č, exp,+, ·,
we will also add a predicate symbol for the ring Q̌ (Ž) given by the locally con-
stant Q-valued (Z-valued) functions and for the forcing relations expressing Ž-linear
independence over Č and the Č-transcendence degree forcing relation.

Definition 2.11. — Let B be a complete boolean algebra. For all c ∈ B
• Čc ⊆ C+(Nc) is the ring of functions which are locally constant and Č

stands for Č1B .
• Let K be a structure among Q,Z,N, we define Ǩc to be the family of

functions given by f ∈ Čc such that ran f ⊆ K and Ǩ stands for Ǩ1B .
Given ~f = (f1, . . . , fn) ∈ C+(St(B))n and c ∈ B, let
• JTrdgČ(~f) = mK =

∨
B
{b ∈ B : ∀G ∈ Nb(TrdgČ/G([~f ]G) = m)},

• JLdimQ̌(~f/Č) = mK =
∨
B
{b ∈ B : ∀G ∈ Nb(LdimQ̌/G([~f ]G/Č/G) = m)}.

Fact 2.12. — The above relations are forcing relation for C+(St(B)).

Proof. — Left to the reader. �

On the face of the definitions we get that

JLdimQ̌(~f/Č) = mK =
∨
B
{b ∈ B : ∀G ∈ Nb LdimQ̌/G([~f ]G/Č/G) = m}

entails that
LdimQ̌/H([~f ]H/Č/H) = m

only on an open dense subset of
H ∈ NJLdimQ̌(~f/Č)=mK.

Similarly for the boolean predicate JTrdgČ(~f) = mK.
First of all we observe that for these two boolean predicates this open dense

subset is the whole of NJLdimČ(~f)=mK (NJTrdgČ(~f)=mK):

Fact 2.13. — Let B be a complete boolean algebra and ~f = (f1, . . . , fn) ∈
C+(St(B))n. Then for all G ∈ St(B)

(1) JTrdgČ(~f) = mK ∈ G if and only if TrdgČ/G([~f ]G) = m.

(2) JLdimQ̌(~f/Č) = mK ∈ G if and only if LdimQ̌/G([~f ]G/(Č/G)) = m.

Proof. — The proof is a standard application of the forcing method. To get the
reader acquainted with what we shall be doing in the remainder we give some of
its parts. Let ~f = (f0, . . . , fn) be a tuple of C+(St(B))-functions.
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Assume that
TrdgČ/G([~f ]G) < m.

Then there is a polynomial p(x0, . . . , xm−1) in Č/G[x0, . . . , xm−1] such that

p([~f ]G) = [0]G.

By the forcing theorem we get that Jp(~f) = 0K ∈ G. Let

p(~x) =
∑
α

fα~x
α,

where α ranges over the appropriate multiindexes and each fα ∈ C+(St(B)). Then
we also get that (fα � Nb) ∈ Čb for all α for some b ∈ G refining Jp(~f) = 0K.

This gives that TrdgČ/H([~f ]H) < m as witnessed by∑
α

([fα]H)~xα

for all H ∈ Nb.
On the other hand, assume for a contradiction that d = JTrdgČ(~f) = mK ∈ G.

This means that for an open dense subset A ofNd we have that TrdgČ/H([~f ]H) = m.
Since G ∈ Nd ∩ Nb, and A is dense in Nd, we also get that A ∩ Nb is non-empty.
Any H in A ∩Nb witnesses that

m = TrdgČ/H([~f ]H) < m,

a contradiction.
The converse direction for Trdg and the proof for the other predicate are left to

the reader. �

We leave to the reader to check that
∀G ∈ Nb TrdgČ/G([~f ]G) = m if and only if ∀c 6 bTrdgČc

(~f � Nc) = m,

and also that
∀G ∈ Nb LdimQ̌/G([~f ]G/Č/G) = m if and only if ∀c 6 bLdimČc

(~f � Nc) = m.

2.3.1. Key Lemmas. Let b ∈ B, and ~f = (f1, . . . , fn) be a tuple of C+(St(B))-
functions.

• Ib(~f) is the ideal in C[~x] given by polynomials p(~x) with coefficients in C
such that

p(~f(H)) = 0 for all H ∈ Nb.
• IG(~f) is the ideal in C[~x] of polynomials p(~x) with coefficients in C such

that
p([~f ]G) = 0.

• Īb(~f) is the ideal in Čb[~x] given by polynomials p(~x) with coefficients in Čb
such that

p(~f � Nb) = 0.
• ĪG(~f) is the ideal in Č/G[~x] of polynomials p(~x) with coefficients in Čb for
some b ∈ G such that

[p]G([~f ]G) = 0.
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If no confusion can arise we let Ib denote Ib(~f) and similarly for all the other ideals
defined above.

Notice the following:
• Ib ⊆ IG for all G ∈ Nb,
• Ib ⊆ Īb,
• IG ⊆ ĪG for all G ∈ Nb,
• [p]G ∈ ĪG for all p ∈ Īb and for all G ∈ Nb, where

[p]G =
∑
α

[fα]Gxα if p =
∑
α

fαx
α.

Fact 2.14. — V (IG,C) and V (ĪG, Č/G) are irreducible algebraic varieties.

Proof. — Assume p(~x)q(~x) ∈ IG(~f). Then [p ◦ ~f ]G[q ◦ ~f ]G = 0 in C+(St(B))/G.
Since the latter is a field we get that [p ◦ ~f ]G or [q ◦ ~f ]G must be 0, which yields
the desired conclusion. The proof for V (ĪG, Č/G) is identical. �

Lemma 2.15. — Assume B is a complete boolean algebra. For each b ∈ B+ and
~f = (f1, . . . , fn) tuple of C+(St(B))-functions, there exists c 6B b in B+ such that
for all G ∈ Nc

• Ic(~f) = IG(~f),
• [~f ]G is a generic point for V (IG(~f), C+(St(B))/G).

Proof. — Assume the first conclusion of the Lemma fails for b and ~f . Let b0 = b

and I0 = Ib(~f) and build by induction a strictly increasing chain of ideals In on C
and a decreasing chain of elements bn >B 0B as follows:

Given In = Ibn(~f), find — if possible — some p(~x) ∈ C[~x] which is not in In and
vanishes on [~f ]G for some G ∈ Nbn

. Then

p([~f ]G) = [0]G if and only if Jp(~f) = 0K ∈ G.

If we can proceed for all n, then

{In : n ∈ N}

is a stricly increasing chain of ideals on the Noetherian ring C[x1, . . . , xn]. This is
impossible, so we can find bn = c such that IG(~f) = Ic(~f) for any G ∈ Nc.

We are left to prove that for any G ∈ Nc the point [~f ]G ∈ (C+(St(B))/G)n is
generic for V (Ic(~f), C+(St(B))/G). This is immediate for all G ∈ Nc, since

p([~f ]G) = 0 iff p(~x) ∈ IG(~f) = Ic(~f).

The proof of the Lemma is completed. �

Lemma 2.16. — Assume B is a complete boolean algebra. Let ~f = (f1, . . . , fn)
be a tuple of C+(St(B))-functions, and c ∈ B be such that Ic(~f) = IG(~f) for all
G ∈ Nc. Then Id(~f) is a set of generators for Īd(~f � Nd) in Čd[~x] for all d 6B c and
IG(~f) is a set of generators for ĪG(~f) for all G ∈ Nc. In particular

V (IG(~f), C+(St(B))/G) = V (ĪG(~f), C+(St(B))/G)

for all G ∈ Nc.
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Proof. — Let p1, . . . , pk ∈ C[~x] be a set of generators for Ic(~f). We claim that
p1, . . . , pk is also a set of generators for Īc(~f) in Čc[~x]: Pick some p ∈ Čc[~x] such
that p ∈ Īc(~f). Since the coefficients of p are locally constant functions defined on
Nc, we can find a maximal antichain {dj : j ∈ J} such that each dj refines c and is
such that

p � Ndj =
∑
α

fα � Ndjx
α ∈ C[~x].

This gives that
p � Ndj (~f) ∈ Idj (~f) = Ic(~f)

for all j ∈ J . Find thus q1
j , . . . q

k
j ∈ C[~x] such that

p � Ndj
=

∑
l=1,...,k

qljpl.

Define for each l = 1, . . . , k ql ∈ C+(Nc) by the requirement that
ql � Ndj

= qlj

for all j ∈ J .
Then ql ∈ Čc[~x] for all l = 1, . . . , k and

p =
∑

l=1,...,k
ql · pl ∈ Īc(~f).

Since p ∈ Ic(~f) was chosen arbitrarily, we conclude that p1, . . . , pk are a set of
generators for Īc(~f) in Čc[~x]. This proves the first part of the Lemma.

For the second part observe that p1, . . . , pk are a set of generators for IG(~f) for
all G ∈ Nc.

Now pick [p]G ∈ ĪG(~f) for G ∈ Nc. Then for some d 6B c in G p � Nd ∈ Īd(~f).
But since c >B d it is immediate to check that p1, . . . , pk are generators also for
Īd(~f). We conclude that p � Nd can be obtained as a linear combination of p1, . . . , pk
with coefficients in Čd[~x]. Thus this occurs as well for [p]G taking the germs of these
coefficients in C+(St(B))/G. The proof of the Lemma is completed. �

Lemma 2.17. — Let b ∈ B and ~f = (f1, . . . , fn) be a tuple of C+(St(B))-
functions. Assume that

JLdimQ̌(f1, . . . , fn/Č) = nK >B b

(i.e. [f1]H , . . . , [fn]H are Q̌/H-linearly independent modulo Č/H for all H ∈ Nb).
Then there exists an ultrafilter G ∈ Nb such that

TrdgČ/G([~f ]G, [e
~f ]G) > n+ 1.

Clearly the proof of this Lemma concludes the proof of Theorem 2.10 since it
shows that the statement

ACQ̌/H,exp /H([~f ]H) > 0

holds for a dense set of H for any fixed ~f ∈ (C+(St(B))<N such that [~f ]H is not
contained in Č/H. In particular we get that for all ~f ∈ (C+(St(B))n and for all
n ∈ N

JACQ̌,exp(~f) > 0KB = 1B
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and
JACQ̌,exp(~f) = 0KB = J~f ⊆ ČnKB.

By observations regarding the properties of the forcing predicates JLdimQ̌(~f/Č)KB

and JTrdgČ(~f)KB, and once again the forcing theorem, we get that

ACQ̌/H,exp /H([~f ]H) > 0

holds for all H and for any fixed ~f ∈ (C+(St(B))<N not contained in (Č/H)<N,
which is the desired conclusion.

We now prove the Lemma.
Proof. — First of all we choose c 6 b such that

Ic(~f, e
~f ) = IG(~f, e~f )

for all G ∈ Nc, which is possible by Lemma 2.15. We let I = Ic = IG in what
follows, and p1, . . . , pm ∈ C[~x, ~y] be a set of generators of minimal size for I. Then
ĪG is also generated by p1, . . . , pm.

Now we have that for all algebraically closed fields K containing all the coeffi-
cients of p1, . . . , pm, the algebraic dimension of V (I,K) is the same and is given
by TrdgL(~λ) with ~λ ∈ K2n an L-generic point and L a field containing all the
coefficients of p1, . . . , pm.

This gives that for any G ∈ Nc the dimension of V (ĪG, C+(St(B))/G) as a variety
over (C+(St(B))/G)2n is equal to the transcendence degree of ([~f, e~f ]G) over C as
well as over Č/G, since —by Lemma 2.16— the latter is a generic point of the
variety

V (I, C+(St(B))/G) = V (ĪG, C+(St(B))/G)

for the field Č/G.
So in order to prove the Lemma we can also study the algebraic dimension of

V (I, C+(St(B))/G) as a subvariety of (C+(St(B))/G)2n and prove that it is at least
n+ 1 for some G ∈ Nc.

To prove this we argue as follows:
(1) First of all we use classical arguments rooted in the equality of the notion of

algebraic dimension of an irreducible smooth quasi-affine variety contained
in C2n and of the notion of topological (or analytic) dimension of the same
variety seen as an analytic manifold, to argue that the analytic dimension
of V (I,C) (which is equal to its algebraic dimension, and thus also to the
algebraic dimension of V (I, C+(St(B))/G)) is positive.

(2) Next we argue that we can find n distinct analytic paths with the same ori-
gin inside V (I,C) which are Q-linearly independent modulo C to conclude
that that the algebraic dimension of V (I, C+(St(B))/G) is at least n + 1
by means of Ax’s theorem 2.1.

Let
Expn = {(~λ, e~λ) : λ ∈ Cn}.

Remark that V (I,C)∩ Expn is the zero-set of the finite set of analytic functions

{p1, . . . , pm, y1 − ex1 , . . . , yn − exn} ,
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where p1, . . . , pm ∈ C[~x, ~y] is a set of generators for I. Consider the Jacobian
J : C2n → C(n+m)2 of this finite set of functions and the map

φ : Nc → n+m+ 1

G 7→ rank(J(~f(G), e~f(G))).
φ is continuous with range on a discrete space, so it must be constant on a clopen
non-empty subset of Nc. By refining furher c if necessary, we can assume that φ is
constant on Nc with value k. Pick G ∈ Nc. Then rank(J(~f(G), e~f(G))) = k entails
that rank(J(~f(G), e~f(G))) = k on an open neighborhood UG ⊆ C2n of (~f(G), e~f(G)).
This gives that for any G ∈ Nc the analytic dimension of V (I,C) ∩ Expn around
(~f(G), e~f(G)) is k since the rank of the Jacobian of the functions

{p1, . . . , pm, y1 − ex1 , . . . , yn − exn}
of which V (I,C) ∩ Expn is the 0-set attains its maximum k on all points of UG ∩
V (I,C)∩ Expn. Therefore (~f(G), e~f(G)) is a smooth point of V (I,C)∩ Expn for all
G ∈ Nc.

Fix now some G ∈ Nc. By the implicit function theorem applied to the point
(~f(G), e~f(G)) ∈ V (I,C) ∩ Expn, there is an open (in the euclidean topology on
V (I,C)) analytic map from some Ck to V (I,C) ∩ Expn ⊆ C2n which is an homeo-
morphism with its image and has (~f(G), e~f(G)) in its range. Let V ′ ⊆ V (I,C)∩Expn
be the image of this map. Then V ′ is an open subset of V (I,C) ∩ Expn in the eu-
clidean topology.

Claim. — dim(V ′) > 0.
Proof. — Assume dimV ′ = 0. Then we get that V ′ is the homeomorphic image

of C0, which is a space consisting of a single point. Thus V ′ consists of a single
point and is an open subset of a connected component of the analytic manifold
V (I,C) ∩ Expn in the euclidean topology on V (I,C) ∩ Expn. This gives that V ′ is
a clopen subset of this connected component in this topology, and thus must be
equal to this connected component of V (I,C) ∩ Expn.

Hence we can find an open neighboorhood B ⊆ C2n in the Euclidean topology
on C2n, such that

B ∩ V (I,C) ∩ Expn = V ′ = {(~f(G), e~f(G))}.

This gives that (~f(H), e~f(H)) = (~f(G), e~f(G)) for all H such that (~f(H), e~f(H)) ∈
B ∩ V (I,C). However

I = IH(~f, e~f ) = IG(~f, e~f ) = Ic(~f, e
~f )

for all H ∈ Nc. In particular p(~f(H), e~f(H)) = 0 for all p ∈ I and all H ∈ Nc, i.e
(~f(H), e~f(H)) ∈ V (I,C) for all H ∈ Nc. Hence (~f(H), e~f(H)) = (~f(G), e~f(G)) for all
H ∈ Nc with (~f(H), e~f(H)) ∈ B. We conclude that ~f is constant with value ~f(G)
on an open subset of Nc, contradicting our assumptions that ~f is nowhere locally
constant on Nb ⊇ Nc. �

By the Claim we get that for any G ∈ Nc, the alegebraic dimension of V (I,C)
around (~f(G), e~f(G)) is positive since V (I,C) contains the analytic variety of posi-
tive dimension V ′.
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We now come to the heart of the proof of this Lemma.

Claim. — For some G ∈ Nc
TrdgC([f1]G, . . . , [fn]G, [ef1 ]G, . . . , [efn ]G) > n+ 1.

Proof. — Let c1 6 c be such that (~f(H), e~f(H)) ∈ V ′ for all H ∈ Nc1 . Our
assumptions give that

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ V ′

for all H ∈ Nc1 and that V ′ is a connected analytic manifold of positive dimension.
Let CΩ(V ′) denote the vector valued paths φ : ∆→ C2n which are analytic and

with range contained in V ′ ⊆ C2n.
We will use the following standard fact (Observation 7 on analytic manifolds):

Fact 2.18. — For any distinct H1, . . . ,Hk with ~f(Hi) 6= ~f(Hj) for all 0 < i 6=
j 6 k in Nc1 there is a path in CΩ(V ′) passing through

(f1(Hj), . . . , fn(Hj), ef1(Hj), . . . , efn(Hj))

for all 0 < j 6 k.

For each H ∈ Nc1 consider the family PathH of CΩ(V ′)-paths
~φ : ∆→ V ′ ⊆ C2n

with
~φ(0) = (f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

Let H be the family of hypersurfaces (relative to the analytic manifold given by
Expn ⊆ C2n) given by points (~x, ~y) ∈ Expn satisfying∑

i=1,...,n
mixi = a;

∏
i=1,...,n

ymi
i = ea

for some a ∈ C and some vector (m1, . . . ,mn) ∈ Nn.

Subclaim. — For all G ∈ Nc1 the set DG of H ∈ Nc1 such that any CΩ(V ′)-
path in PathG passing through

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

is contained in some hypersurface in H is nowhere dense.

Proof. — Assume not for some G. Let d ∈ B be such that DG ∩Nd is dense in
Nd.

By our assumptions, any CΩ(V ′)-path contained in V ′ starting in the point

(f1(G), . . . , fn(G), ef1(G), . . . , efn(G))

and passing through

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H))

for some H ∈ D is contained in an hypersurface in H. Since V ′ is connected, for
any G1, . . . , Gk ∈ DG there is a CΩ(V ′)-path in PathG passing through

(f1(Gj), . . . , fn(Gj), ef1(Gj), . . . , efn(Gj)).
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By our assumptions this path is contained in some hypersurface of the form∑
i=1,...,n

mixi = a;
∏

i=1,...,n
ymi
i = ea

belonging to H. Now select for as long as it is possible for each 0 6 j < n some
Gj ∈ DG so that G0 = G and

(f1(Gj+1), . . . , fn(Gj+1), ef1(Gj+1), . . . , efn(Gj+1)).
does not belong to the unique j-dimensional hypersurface Ej determined as follows:
Let Aj be the unique j-dimensional hyperplane in Cn passing for the points

(f1(Gk), . . . , fn(Gk))

with k 6 j. Let Ej consists of the points of the form (~λ, e~λ) with ~λ ∈ Aj . Ej is an
hypersuperface contained in some element of H for each 0 6 j 6 n− 1. To proceed
in the construction notice that Ej is a closed subset of C2n for all j < n, thus

Uj = {H ∈ Nd : (f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej}
is a closed subset of Nd. So either the latter set is equal to with Nd, or its com-
plement has open and non-empty intersection with Nd, in which case we can find
Gj+1 ∈ DG \ Uj since DG is dense in Nd. Continue this way for all 0 6 j < n for
which this is possible until j = n− 1, if possible.

We show that this j cannot exist, reaching a contradiction.
• If we stop at stage j < n−1, this occurs only if for allH ∈ DG\{G0, . . . , Gj}

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej .
However Ej ⊆ M for some hypersurface M ∈ H. This M is therefore the
0-set of equations of the form∑

i=1,...,n
mixi = a,

∏
i=1,...,n

ymi
i = ea.

In particular we get that for a dense set of H ∈ Nd
(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej .

Since belonging to Ej is a closed property of C2n, and the map H 7→
(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) is continuous on Nd, we get that for
all H ∈ Nd

(f1(H), . . . , fn(H), ef1(H), . . . , efn(H)) ∈ Ej .
Then in C+(Nd) ∑

i=1,...,n
mifi � Nd = a.

This contradicts the Q-linear independence modulo C of the vector f1 �
Nd, . . . , fn � Nd on Nd for a d 6 b, which was an assumption of the Lemma.

• Otherwise we can continue up to stage j = n− 1. This gives that
{(f1(Gk), . . . , fn(Gk)) : 0 6 k 6 n}

are points in Cn in general position, i.e. they are not contained in any
proper affine subspace of Cn. Since

(f1(Gk), . . . , fn(Gk), ef1(Gk), . . . , efn(Gk))
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are all in V ′ for all k 6 n, and V ′ is an analytic variety homeomorphic to
Ck (with k > 0) via an analytic map, there is a CΩ(V ′)-path (φ1, . . . , φ2n)
connecting all of these points and starting in (~f(G0), e~f(G0)). Now observe
that ~φ = (φ1, . . . , φn) is an analytic path passing through n + 1-points in
Cn in general position. Thus it cannot be contained in any hyperplane of
Cn. In particular (~φ, e~φ) ∈ PathG cannot be contained in any hypersurface
belonging to H, which is a contradiction.

The subclaim is proved. �

By the above subclaim, we can fix G ∈ Nc1 and find H ∈ Nc1 \DG (since this
latter set contains a dense open subset of Nc1). Then we can pick an analytic path
(~φ, e~φ) in PathG passing through (~f(H), e~f(H)) and not contained in any hyperplane
in H.

Consider finally the field of fractions of germs [f ] of analytic functions f : U → C
for some U ⊆ C open neighborhood of 0. around the point 0, where [f ] = [g] are
equivalent germs if f and g agree on U for some open U ⊆ ∆. This is a differential
field OΩ with differential

D : OΩ → OΩ

mapping
[f ]/[g]→ [f ′g − g′f ]/[g2]

and ker(D) = C given by the germs of constant functions.
Since we chose ~φ sot that (~φ, e~φ) is not contained in E for any hypersurface

E ∈ H, we get that [~φ] is a vector of elements of the differential field OΩ which are
Q-linearly independent modulo C, so that the hypothesis of Ax’s theorem apply to
these elements. By Ax’s result 2.1, we get that

TrdgC([~φ, e~φ]) > n+ 1.

Now let
J = {p ∈ C[~x, ~y] : p([~φ, e~φ]) = 0} ;

we get that I = INc2
⊆ J since (~φ, e~φ) has range contained in V (I,C). In particular

TrdgČ/G([~f ]G, [e
~f ]G) = dim(V (I, C+(St(B))/G))

= dim(V (I,C) > dim(V (J,C)) = TrdgC([~φ, e~φ]) > n+ 1.

This concludes the proof of the Claim and of the Lemma6. � �

3. Step (3)

From now on we shall assume the reader has some familiarity with the boolean
valued model approach to forcing in set theory. Standard references for the material
of this section are [2] or [6], and a detailed account of the results we sketch here
can be found in [9]. We briefly sketch the general picture of the forcing theory in
the next subsection.

6With some extra work one can check that J = I for an open dense set of H ∈ Nc1
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3.1. A brief outline of forcing over the standard model of set theory.
Recall that for (V,∈) the standard model of ZFC for the first order language {∈,=}
and B a complete boolean algebra in V we can define (by transfinite recursion) the
class of B-names V B given by τ ∈ V if τ is a function with domain contained in V B

and range contained in B. We can also define forcing relations

∈B: (V B)2 → B
(τ, σ) 7→ Jτ ∈ σK

=B: (V B)2 → B
(τ, σ) 7→ Jτ = σK

such that (V B,∈B,=B) is a full B-valued model for the language of set theory and
JφK = 1B for all axioms φ of ZFC.

Letting
[τ ]G = {σ : Jτ = σK ∈ G}

and
[τ ]G ∈ [σ]G if and only if Jτ ∈ σK ∈ G,

we also have that

Jφ(τ1, . . . , τn)K ∈ G if and only if V B/G |= φ([τ1]G, . . . , [τn]G)

for all formulae φ(x1, . . . , xn) in this language and all G ∈ St(B).
Finally we recall that G is V -generic for a cba B if G ∩D is nonempty for all D

dense subset of B+ and that for such a G and all τ ∈ V B we can define

τG = {σG : τ(σ) ∈ G},

and wet let
V [G] = {τG : τ ∈ V B}.

With this choice of G we have that the map [τ ]G 7→ τG defines an isomorphism
of (V B/G,∈G) with (V [G],∈).

Moreover any element u ∈ V has a canonical name ǔ ∈ V B such that ǔG = u
whenever G is V -generic for B.

It is well known that V -generic filters cannot exist for an atomless complete
boolean algebra, nonetheless there is a wide spectrum of solutions to overcome this
issue, and work under the assumption that for any such B, V -generic filters can be
found.

3.2. The relation between C+(St(B)) and V B. We have the following theorem
linking the boolean valued model C+(St(B)) to the set theoretic boolean valued
model V B (see [9, Theorem 4.3.5]):

Theorem 3.1. — Let B be a cba, b ∈ B, and {Un : n ∈ ω} be a countable base
for the euclidean topology on C. Given f ∈ C+(Nb) for some b ∈ B, let τf ∈ V B

be a B-name for the unique object in V B satisfying in V B

Jτf ∈ UnK = Reg
(
f−1[Un]

)
.
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Given R a forcing relation on C+(Nb)n let R̄ ∈ V B be a B-name for an n-ary
relation on the n-tuples of complex numbers Cn as computed in V B such that

JR̄(τf1 , . . . , τfn)KV
B

= R(f1, . . . , fn).

Then the assignment f 7→ τf , R 7→ R̄ is an embedding of the boolean valued models
C+(St(B)) and C+(Nb) for b ∈ B in the boolean valued model V B such that

• the equality forcing relation on C+(St(B)) is mapped to the equality rela-
tion on V B;

• for all τ ∈ V B such that

Jτ is a complex number KV
B

= b,

there exists f ∈ C+(Nb) such that

Jτ = τf KV
B

= b ;

• for all forcing relations R on C+(St(B))n and all f1, . . . , fn ∈ C+(St(B))

JR̄(τf1 , . . . , τfn
)KV

B
= R(f1, . . . , fn).

3.3. Shoenfield absoluteness. We say that A ⊆ Cm is a Σ1
2-property if there is

a Borel predicate R ⊆ C<ω and ~a ∈ C<ω such that A(~a) holds if and only if

∃x∀yR(x, y,~a).

Given a Borel predicate R ⊆ Cn and a complete boolean algebra B, we let

RB : C+(St(B))n → B
(f1, . . . , fn) 7→ Reg ({H : R(f1(H), . . . , fn(H))})

and

R̄B : (V B)n → B

(τ1, . . . , τn) 7→
∧

j=1,...,n
Jτj is a complex numberK ∧RB(fτ1 , . . . , fτn)

Theorem 3.2 (Shoenfield absoluteness). — Assume A is a Σ1
2-property defined

by the Borel predicate R as ∃y∀xR(x, y,~a). Then A(a1, . . . , an) holds in V for
complex numbers a1, . . . , an if and only if

J∃x∀yR̄B(x, y, ǎ1, . . . , ǎn)KB = 1B

for some complete boolean algebra B.

3.4. WSP holds for C relative to a countable subfield. We can now prove
Theorem 1.3. Shoenfield absoluteness gives a simple proof of the following:

Corollary 3.3. — C+(St(B))/G is an algebraically closed field for any G ∈
St(B) and for any complete boolean algebra B.

Proof. — The graph of the multiplication and of the addition are Borel relations
on C3, and the field axioms and the algebraic closure axioms are expressible as
Σ2-properties of these operations. �
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Now let B be the complete boolean algebra of regular sets in CN where C is
endowed with the discrete topology. In V [G] there is a new bijection f of CV = C
with N given by f(n) = a if and only if

{g ∈ CN : g(n) = a}

is in G. Moreover

V [G] |= φ((τ1)G, . . . , (τn)G) if and only if Jφ(τ1, . . . , τn)K ∈ G.

Now we observe that the following holds in V [G] if G is V -generic for B:
• C+(St(B),C)/G is isomorphic to the complex numbers of V [G] via the map

[f ]G = (τf )G,

• eV [G] is the unique analytic function on the field

CV [G] = {τG : Jτ is a complex numberK ∈ G}

whose power series expansion is∑
n=0,∞

xn/n!.

Moreover eV [G] is the graph of [f ]G 7→ [ef ]G modulo the isomorphism of
C+(St(B),C)/G with CV [G],
• C ∩ V = CV = ČG is identified with Č/G modulo the above isomorphism
and NV [G] ∩ V = NV = NV [G] = ŇG are the natural numbers both in V
and in V [G].
• The Key Lemmas for ~f give that

TrdgCV ([~f ]G, e[~f ]G) > n

whenever [~f ]G is a family of Q-linearly independent vectors modulo CV ,
since the boolean value of this statement is 1B (notice that such vectors are
identified to complex numbers of V [G] \ V , since the complex numbers of
V are represented by the locally constant functions).
• V [G] models that CV is a countable exponentially and algebraically closed
subfield of CV [G] and the latter is the field of complex numbers in V [G].

In particular V [G] models that
There exists CV , a countable algebraically and exponentially closed
subfield of CV [G], such that for all ~f ∈ (CV [G])n

TrdgCV ([~f ]G, e[~f ]G) > LdimQ(~f/CV ),

with equality holding only if ~f ⊆ CV .
This is a Σ1

2-statement in no parameters and a few (lightface definable) Borel pred-
icates which holds in

(CV [G],CV ,NV , eV [G],TrdgCV ,LdimCV ).

By Shoenfield absoluteness it holds in V , since all of the above predicates are Borel.
More precisely the forcing theorem gives that V B models the above statement

with boolean value 1B and Shoenfield absoluteness shows that it also holds in V .
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