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INFINITE CHARACTERS OF TYPE II ON SLn(Z)

RÉMI BOUTONNET

Abstract. We construct uncountably many infinite characters of type II for SLn(Z), n > 2.

1. Introduction

Since the work of Bekka [2] it is known that the special linear groups PSLn(Z),
n > 3, have no characters but the obvious ones. Recall that a character on a
group Γ is a positive definite function φ : Γ → C which is conjugation invariant,
normalized so that φ(e) = 1 and extremal for these properties. Bekka’s result states
that every character on Γ = PSLn(Z), n > 3, is either the Dirac function δe, or
is equal to 1 on a finite index subgroup Λ < Γ, in which case it factors through a
character of the finite quotient Γ/Λ. This result was generalized for other higher
rank semi-simple lattices by Peterson [9], see also [6, 1] for other proofs and results
in this direction.

A classical argument based on the GNS construction shows that, alternatively,
a character is of the form φ = τ ◦ π, where π : Γ → U(M) is a generating unitary
representation into a von Neumann factor M with a faithful normal finite trace τ .
Here generating means that π(Γ) generates M as a von Neumann algebra. Using
this characterization, we see that characters admit an infinite generalization.

Definition. — A character (finite or infinite) on a group Γ is a tracial weight
on the universal C*-algebra C∗(Γ) of the form Tr ◦π, where π : Γ → U(M) is a
generating unitary representation into a semi-finite factor M admitting a normal
faithful semi-finite trace Tr such that π(C∗(Γ)) contains a non-zero positive operator
with finite trace1. The type of a character will be the von Neumann type of the
factor M .

It is natural to ask whether the rigidity results mentioned above for finite char-
acters still hold in the infinite setting. Answering a question of Rosenberg [10],
Bekka recently proved that many groups, including the groups SLn(Z), n > 2, ad-
mit characters of type I∞, [3]. He further asked about the existence of characters of
type II∞, see [3, Remark 5]. While this question was raised specifically for GLn(Q),
which we are unable to treat at the moment, we construct in this note uncountably
many characters of type II∞ for the linear groups SLn(Z), n > 3. Our approach
follows the same ideas as in [3], except that we induce type II representations rather
than finite dimensional ones.

The next proposition illustrates the main idea, even though the construction for
SLn(Z) is a bit more elaborate.

Math. classification: 22D25.
Keywords: Characters on groups.
(*) Research supported by ANR grant AODynG, 19-CE40-0008.
1According to the terminology in [4], π is called a normal representation.
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Following Bekka-Kalantar [5], we say that a subgroup Λ in a group Γ is a-normal
if Λ∩ gΛg−1 is amenable for every g ∈ Γ \Λ. For any group, we generically denote
by λ its left regular representation. Classically, B(H) denotes the von Neumann
algebra of all bounded operators on a Hilbert space H.

Proposition 1.1. — Consider a group Γ with a non-amenable, a-normal sub-
group Λ.

(1) For every factorial representation π0 : Λ → U(H0) which is not weakly
contained in the regular representation, the induced representation π :=
IndΓ

Λ(π0) is factorial and π(Γ)′′ is naturally isomorphic with B(`2(Γ/Λ))⊗
π0(Λ)′′. Moreover, there exists a non-zero x ∈ C∗(π(Γ)) and a rank one
projection p0 ∈ B(`2(Γ/Λ)) such that x(p0 ⊗ 1) = x.

(2) Given two representations π0, π
′
0 of Λ, denote by π and π′, respectively, the

induced Γ-representations. If π is weakly contained in π′ then π0 is weakly
contained on π′0⊕λ. If π0 is factorial, this further implies that π0 is weakly
contained in π′0 or in λ.

Corollary 1.2. — If Γ contains a proper a-normal non-amenable virtually free
subgroup, then it admits uncountably many factorial representations of type II∞
which are traceable, none of which weakly contains any other.

In general it is not so easy to construct interesting a-normal subgroups in a given
group. For example, GL2(Z) can be viewed as an a-normal subgroup of SL3(Z) via
the top-left embedding, but for n > 4, we do not know if SLn(Z) admits a non-
amenable a-normal proper subgroup at all. Nevertheless, the same ideas allow to
prove that inducing factorial representations of certain products of copies of SL2(Z)
in SLn(Z) will still give satisfactory factorial representations of SLn(Z).

Theorem 1.3. — For every n > 2, SLn(Z) admits uncountably many factorial
representations of type II∞ which are traceable, none of which weakly contains any
other.

Our construction is ad hoc. We don’t know if a similar result holds for, say,
co-compact lattices in higher rank semi-simple Lie groups. We point out that a
similar argument can be used to produce factorial representations of type III of
SLn(Z).

2. Preliminaries

2.1. Factorial representations and weak containment. By definition, a uni-
tary representation π : Γ → U(H) is called factorial if the von Neumann algebra
π(Γ)′′ is a factor. We sometimes extend this terminology to specify the von Neu-
mann type of π(Γ)′′.

Lemma 2.1. — If π : Γ→ U(H) is a factorial unitary representation, then every
subrepresentation of π is weakly equivalent to π. More generally, if π is the direct
sum π1 ⊕ · · · ⊕ πn of finitely many factorial representations π1, . . . , πn of Γ, then
every subrepresentation of π weakly contains one of the πi’s.

Proof. — Clearly the second statement implies the first one. Assume that π =
π1 ⊕ · · · ⊕ πn, for finitely many factorial representations π1, . . . , πn of Γ. Denote



INFINITE CHARACTERS OF TYPE II ON SLn(Z) 25

by p1, . . . , pn the orthogonal projections on each of these direct summands, so that
πi = piπ for i = 1, . . . , n.

Consider a non-zero invariant subspace K ⊂ H and denote by p ∈ B(H) the
orthogonal projection onto K. Denote by z ∈ Z(π(Γ)′′) the central support of
p ∈ π(Γ)′. Note that for every i = 1, . . . , n, zpi is either 0 or pi, because piπ(Γ)′′ =
πi(Γ)′′ is a factor.

Choosing an index i such that zpi 6= 0, we thus get zpi = pi. Assume that
x ∈ π(Γ)′′ is such that px = 0. By definition of the central support, this implies
that zx = 0, and further, pix = pizx = 0. So πi = piπ is weakly contained in
pπ. �

Lemma 2.2. — If π : Γ → U(H) is a unitary representation which is weakly
contained in the direct sum of two representations π1⊕π2, then π is the direct sum
of two representations: one weakly contained in π1 and one weakly contained in π2.
If moreover π is factorial then it is weakly contained in π1 or π2.

Proof. — By assumption the map π1(g)⊕π2(g) 7→ π(g) extends to a C*-morph-
ism C∗(π1⊕π2)→ C∗(π). By Arveson extension theorem, this morphism extends to
a ucp map Φ : B(H1⊕H2)→ B(H). Denote by p1, p2 ∈ B(H1⊕H2) the orthogonal
projections onto H1, H2, respectively. By multiplicative domain considerations,
Φ(p1),Φ(p2) ∈ π(Γ)′. For i = 1, 2, denote by ri ∈ π(Γ)′ the support projection of
Φ(pi) ∈ π(Γ)′.

Claim. For x in the universal C*-algebra C∗(Γ), if πi(x) = 0, then riπ(x) = 0.
In particular, riπ is weakly contained in πi.

Indeed πi(x) = 0 means that pi(π1 ⊕ π2)(x) = 0. Applying Φ, and using mul-
tiplicative domain, we get that Φ(pi)π(x) = 0. This easily implies the claim, by
definition of the support projection.

Since p1 +p2 = 1, we find that Φ(p1),Φ(p2), r1 and r2 all commute to each other.
Moreover since Φ is a ucp map, we have 0 6 Φ(pi) 6 1, showing that ri > Φ(pi),
for i = 1, 2. Therefore r1 + r2 > Φ(p1) + Φ(p2) = 1. So 1 − r1 6 r2. From the
claim, it follows that r1π ≺ π1, while (1− r1)π ⊂ r2π ≺ π2. This gives the desired
decomposition π = r1π ⊕ (1− r1)π.

The moreover part follows from Lemma 2.1. �

2.2. Induced representations. In this section we are given two groups Λ < Γ
and a unitary representation π0 of Λ.

Denote by s : Γ/Λ → Γ a section to the natural projection map, and by c :
Γ × Γ/Λ → Λ the cocycle given by the formula c(g, x) = s(gx)−1gs(x), for g ∈ Γ,
x ∈ Γ/Λ. By definition, the representation π = IndΓ

Λ(π0) is defined on the Hilbert
space H = `2(Γ/Λ)⊗H0 by the formula

πg(δx ⊗ ξ) = δgx ⊗ (π0)c(g,x)ξ, for all g ∈ Γ, x ∈ Γ/Λ, ξ ∈ H.

The following easy lemma is a special case of a result of Mackey [8]. It is given
in this form in [3, Proposition 9].

Lemma 2.3. — Given another subgroup Σ < Γ, denote by S ⊂ Γ a system of
representatives for the double coset space Σ\Γ/Λ. For each s ∈ S, we denote by πs

the representation of sΛs−1 given by πs(sgs−1) = π0(g), for all g ∈ Λ. Then the
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restriction of π to Σ is equivalent to the direct sum⊕
s∈S

IndΣ
sΛs−1∩Σ(πs|sΛs−1∩Σ).

2.3. Finite index considerations. We will sometimes need to induce represen-
tations from normal finite index subgroups. In this context we prove the following
stability result.

Lemma 2.4. — Consider a group Γ with a finite index normal subgroup Λ < Γ.
Consider a factorial unitary representation π : Λ → U(H) and denote by ρ the
induced representation IndΓ

Λ(π).
(1) Then ρ is the direct sum of finitely many factorial representations. If π is

of type II1, so is ρ.
(2) Consider another factorial representation π′ of Λ and its induced represen-

tation ρ′. Take an automorphism α ∈ Aut(Γ) such that α(Λ) = Λ. If a
subrepresentation of ρ′ is weakly contained in ρ ◦ α, then π′ is weakly con-
tained in π ◦ Adg ◦α for some g ∈ Γ (and Adg denotes the automorphism
of Λ given by g-conjugation inside Γ).

Proof. — (1) By definition ρ is acting on `2(Γ/Λ)⊗H. Since Λ is normal in Γ,
its restriction to Λ is given by

ρh(δgΛ ⊗ ξ) = δgΛ ⊗ πg−1hg(ξ), for every h ∈ Λ, g ∈ Γ, ξ ∈ H.
In other words, ρ|Λ is equivalent to

⊕
gΛ∈Γ/Λ π ◦ Adg−1 . Here we note that the

equivalence class of π ◦ Adg−1 does not depend on the choice of the representative
g ∈ Γ in the class gΛ ∈ Γ/Λ.

Consider the von Neumann algebras N ⊂ M ⊂ M̃ defined by N = ρ(Λ)′′, M =
ρ(Γ)′′ and M̃ = B(`2(Γ/Λ))⊗π(Λ)′′. For every a ∈ Γ/Λ, denote by pa ∈ N ′∩M̃ the
orthogonal projection onto δa ⊗H. Then we see that paN = δa ⊗ π(Λ)′′ = paM̃pa.

In particular, pa(N ′∩M̃)pa = Cpa for every a ∈ Γ/Λ. So N ′∩M̃ admits a finite
partition of unity consisting of minimal projections; it must be finite dimensional.
In particular Z(M) is finite dimensional, which precisely means that ρ is the direct
sum of finitely many factorial representations.

Assume that π(Λ)′′ is of type II1. Then M̃ is also of type II1, and hence M is
a finite von Neumann algebra. Moreover it contains N , which is of type II by our
description of ρ|Λ. So M has no type I direct summand, which proves that it is of
type II1.

(2) Take a subrepresentation σ of ρ′. By Lemma 2.1, we find that σ|Λ weakly
contains a representation of the form π′ ◦ Adh for some h ∈ Γ. So if σ is weakly
contained in ρ ◦ α, then restricting to Λ, we find that π′ ◦Adh is weakly contained
in

⊕
gΛ∈Γ/Λ π ◦ Adg ◦α. Since π′ is factorial, Lemma 2.2 shows that π′ ◦ Adh is

weakly contained in some π ◦Adg ◦α. Hence π′ is weakly contained in π ◦Adg′ ◦α,
for g′ = gα(h)−1. �

2.4. Many representations of virtually free groups. We record here some
obvious facts about the abundance of representations of free groups.

Lemma 2.5. — There exists n > 2 such that for every k > n, the free group
on k generators admits uncountably many factorial representations πi, i ∈ I, of
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hyperfinite type II1 such that πi is not weakly contained in πj ◦ α for any distinct
indices i, j ∈ I and any α ∈ Aut(Fn).

Proof. — There are uncountably many pairwise non-isomorphic finitely gener-
ated simple groups. By Juschenko-Monod’s theorem [7] we can even choose these
groups to be all amenable. So we may find some n large enough so that Fn has
uncountably many non-isomorphic simple quotients Λi, i ∈ I, which are amenable
(and infinite). The regular representation of each Λi yields by composition a unitary
representation πi of Fn. Since Λi is simple infinite, it is ICC, so this representation
is factorial, and by amenability it generates the hyperfinite II1-factor.

Note that the kernel of πi is precisely the kernel of the quotient map pi : Fn → Λi.
Given two indices i 6= j and an automorphism α ∈ Aut(Fn), if πi ≺ πj ◦ α, then
the quotient map pi : Fn → Λi factors through pj ◦ α. By simplicity of Λj , the
factorized map Λj → Λi must be an isomorphism. This gives i = j.

If k > n, then any representation of Fn gives a representation of Fk by compo-
sition with the natural surjection Fk → Fn. �

Lemma 2.6. — Consider a finitely generated group Γ containing a non-abelian
free group of finite index. Then Γ admits uncountably many unitary representations
πi, i ∈ I of hyperfinite type II1, such that πi is not weakly contained in πj ◦ α for
any distinct indices i, j ∈ I and any α ∈ Aut(Γ).

Proof. — Consider a free subgroup F of finite index in Γ. Taking F smaller if
necessary, we can assume that F = Fk, for k large enough so that the previous
lemma holds true. We can also assume that F is normal inside Γ. In fact, since Γ
is finitely generated, it admits only finitely many subgroups of a given finite index.
So we may assume that in fact F is characteristic in Γ, i.e. invariant under every
automorphism of Γ. Then the result follows from combining the above lemma with
Lemma 2.4. �

We observe that a representation π of a group into the hyperfinite II1-factor is
amenable in the sense of Bekka, meaning that π ⊗ π has almost invariant vectors.
So, if the group is non-amenable, such an amenable representation π is not weakly
contained in the regular representation.

3. Proof of the main results

3.1. General results.
Proof of Proposition 1.1. —
(1) Take a non-amenable a-normal subgroup Λ < Γ and a representation π0 of

Λ. Denote by π = IndΓ
Λ(π0) the induced representation.

Set I := (Γ/Λ) \ {Λ}. Then Γ/Λ = {Λ} t I is a Λ-invariant partition, so
that H is the direct sum of two Λ-invariant subspaces, H1 = δΛ ⊗H0 and
H2 = `2(I)⊗H0. Denote by π1 and π2 the two Λ-representations obtained
this way.

We see that π1 is canonically isomorphic with π0 while Lemma 2.3 de-
scribes π2 as a direct sum of representations IndΛ

Σ(σ), where Σ < Γ is of the
form Λ∩ gΛg−1 for some g ∈ Γ \Λ, and σ is a representation of Σ. Since Λ
is a-normal in Γ, each such Σ is amenable and thus σ is weakly contained in
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the regular representation. After inducing to Λ and taking the sirect sum,
we find that π2 is weakly contained in the regular representation of Λ.

By definition, we have an inclusion π(Γ)′′ ⊂ B(`2(Γ/Λ)) ⊗ π0(Λ)′′, and
our goal is to prove that this is an equality. By taking commutants, we
need to prove that π(Γ)′ ⊂ 1⊗π0(Λ)′. Denote by p ∈ B(H) the orthogonal
projection onto H1 = δΛ ⊗H0. As explained above, p ∈ π(Λ)′.

Claim. pT (1− p) = 0 for every T ∈ π(Λ)′.
Otherwise, by classical von Neumann algebra theory, we could find a

nonzero partial isometry u ∈ π(Λ)′ such that uu∗ 6 p and u∗u 6 1 − p.
Then u implements a conjugation between a subrepresentation of π1 ' π0
and a subrepresentation of π2. By Lemma 2.1, this implies that π0 is weakly
contained in π2, and further, in the regular representation. This is excluded
by assumption.

Fix T ∈ π(Γ)′. In particular, T commutes with π(Λ) so the claim implies
that p commutes with T : there exists T0 ∈ B(H0) such that T (δΛ ⊗ ξ) =
δΛ ⊗ (T0ξ) for every ξ ∈ H0. Further, we observe that T0 ∈ π0(Λ)′. Hence
for every g ∈ Γ:

T (δgΛ ⊗ ξ) = Tπ(g)(δΛ ⊗ (π0)c(g,Λ)−1ξ)
= π(g)(δΛ ⊗ T0(π0)c(g,Λ)−1ξ)
= π(g)(δΛ ⊗ (π0)c(g,Λ)−1T0ξ)
= δgΛ ⊗ T0ξ.

Therefore, T = id⊗T0 ∈ 1⊗ π0(Λ)′, as desired.
For the moreover part, observe that π1 is not weakly contained in π2,

as Λ-representations. Hence, there exists a in the universal C*-algebra
C∗(Λ) such that π1(a) 6= 0 while π2(a) = 0. This implies that π(a) =
π1(a) + π2(a) = π1(a) = π(a)p and indeed, p = p0 ⊗ 1 for some rank one
projection p0.

(2) Assume that π is weakly contained in π′. Then this is also true for the
restriction to Λ of these representations. In particular, π0 is weakly con-
tained in π′|Λ which is weakly contained in π′0 ⊕ λΛ, as we observed in the
proof of (1). The factorial case follows from Lemma 2.2. �

Proof of Corollary 1.2. — Assume that Γ contains a proper a-normal non-
amenable subgroup Λ which is virtually free. Note that Λ is necessarily of infinite
index inside Γ.

Lemma 2.6 provides us with an uncountable family of unitary representations
πi, i ∈ I, of Λ which are all amenable, factorial of type II1, and none of which is
weakly contained in any other. In particular no such πi is weakly contained in the
regular representation.

We may then induce these representations to Γ and Proposition 1.1 gives that
the representations ρi, i ∈ I that we get are all factorial of type II∞, traceable, and
none of them is weakly contained in any other. �

Corollary 1.2 raises the question whether virtually free groups themselves admit
many traceable representations of type II∞. This is indeed the case, as follows from
the next lemma.
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Lemma 3.1. — Consider a group Γ and a finite index normal subgroup Λ < Γ.
Assume that Λ admits a non-amenable a-normal proper subgroup. Then Γ admits
a non-amenable a-normal proper subgroup Γ0 such that Γ0 ∩ Λ has finite index
inside Γ0.

Proof. — Take a non-amenable a-normal proper subgroup Λ0 < Λ. Consider
the quotient group F = Γ/Λ, with projection map p : Γ→ F , and take a maximal
subset I ⊂ F such that there exist lifts gi ∈ Γ, i ∈ I, for which p(gi) = i for
every i ∈ I and

⋂
i∈I giΛ0g

−1
i is non amenable. Denote by Λ1 this non-amenable

subgroup.
Claim. For every g ∈ Γ, either gΛ1g

−1 ∩ Λ1 is amenable or g normalizes Λ1.
Assume that gΛ1g

−1 ∩ Λ1 is non-amenable. Then by maximality of I, we must
have that p(g)I = I. Then for every index i ∈ I, we find j ∈ I such that p(g)i = j.
This means that ggiΛ0 = gjΛ0, and hence ggiΛ0g

−1
i g−1 = gjΛ0g

−1
j . Applying this

observation for every i ∈ I and intersecting over I we find that indeed g normalizes
Λ1, as claimed.

Note that Λ1 is a-normal inside Λ, being an intersection of a-normal subgroups
of Λ. So it is equal to its own normalizer inside Λ. Furthermore, since Λ has
finite index inside Γ, the normalizer NΛ(Λ1) of Λ1 inside Λ has finite index in the
normalizer NΓ(Λ1) inside Γ. So we conclude that Λ1 = NΛ(Λ1) has finite index
inside Λ2 := NΓ(Λ1).

Let us check that Λ2 is a-normal in Γ. Take g ∈ Γ such that gΛ2g
−1 ∩ Λ2 is

non-amenable. Since Λ1 has finite index inside Λ2, we find that gΛ1g
−1 ∩ Λ1 is

non-amenable as well. By the claim this implies that g ∈ Λ2. �

Corollary 3.2. — If Γ is virtually free, non-amenable, then it admits un-
countably many factorial representations of type II∞ which are traceable, and none
of which is weakly contained in any other.
3.2. The case of SLn(Z). The case n = 2 is a special case of Corollary 3.2.

Fix n > 3 and denote by Γ := SLn(Z). Denote by d the integer part of n/2, so
that n = 2d or n = 2d + 1. Denote by Σ < Γ the copy of SL2(Z)d given by block
diagonal matrices diag(A1, . . . , Ad, 1odd), where A1, . . . , Ad ∈ SL2(Z) and 1odd is
the empty matrix if n is even and equals the 1× 1-matrix with entry 1 if n is odd.

Denote by e1, . . . , en the canonical basis in V = Rn. For the natural action of Γ
on V , Σ fixes the planes Vk := span({e2k−1, e2k}), for k = 1, . . . , d. It also fixes the
space Vodd, defined to be Ren if n is odd and 0 otherwise. For every k = 1, . . . , d,
denote by Σk < Σ the set of elements which preserve Vk. Then Σk is a copy of
SL2(Z) and Σ = Σ1 × · · · × Σd.

Although Σ is not a-normal in Γ, the family of subgroups {Σi, , i = 1, . . . , d}
satisfies a property of this kind (up to a finite index normalizer). The next lemma
specifies this property. The task will be to extend Proposition 1.1 to this setting.

Lemma 3.3. — The following facts are true :
(1) Σ has finite index in its normalizer Λ := NΓ(Σ);
(2) Λ coincides with the set of elements in Γ which globally preserve the direct

sum decomposition V = V1 ⊕ · · · ⊕ Vd ⊕ Vodd. In other words it is the set
of elements which permute the spaces Vk, k = 1, . . . , d.

(3) For every g ∈ Γ \ Λ, there exists 1 6 k 6 d such that Σk ∩ gΣg−1 is
amenable.
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(4) For every g ∈ Γ \ Λ, there exists 1 6 k 6 d such that Σk ∩ gΛg−1 is
amenable.

Proof. —
(1) Note that Σ has finite index inside the set of elements g ∈ Γ such that

gVi = Vi for all i = 1, . . . , d. So (2) is easily seen to imply (1).
(2) Denote by Λ′ the set of elements which permute the spaces Vk, k = 1, . . . , d.

It is easy to see that elements of Λ′ normalize Σ. So Λ′ ⊂ Λ. For the
converse inclusion, it suffices to check that property (3) holds for every
g ∈ Γ \ Λ′, since clearly the conclusion of (3) prevents g to normalize Σ.

(3) Take g ∈ Γ \ Λ′. Then there exists 1 6 k 6 d such that Vk is not equal to
some gVi, i = 1, . . . , d. Let us prove that Σ0 := Σk ∩ gΣg−1 is amenable.

Denote byWk :=
∑

i 6=k Vi, and by p the projection onto Vk parallel toWk

and q = 1−p the projection ontoWk. These projections are Σ0-equivariant.
Let us take some 1 6 i 6 d such that p(gVi) 6= 0. Since g(Vi) is globally
Σ0-invariant, p(gVi) is Σ0-invariant as well. If p(gVi) is one dimensional,
then we have found a Σ0-invariant line inside the plane Vk, proving that
Σ0 acts amenably on Vk. Since it acts trivially on Wk, this implies that Σ0
is amenable.

Assume on the contrary that p(gVi) = Vk. Then p implements a conju-
gation between gVi and Vk. But by assumption, gVi 6= Vk. So must also
have q(gVi) 6= 0. If q|gVi is injective, then we find that Σ0 acts trivially on
gVi. Otherwise the kernel of q intersects gVi into a line, which is globally
Σ0-invariant. In both cases we find a Σ0-invariant line in gVi, hence in Vk,
and we conclude again that Σ0 is amenable.

(4) follows obviously from (1) and (3). �

Proposition 3.4. — Consider a type II1 factorial representation σ of Σ, whose
restriction to each Σk, k = 1, . . . , d, is factorial and not weakly contained in the
regular representation. The following facts hold true.

(1) The induced representation ρ = IndΓ
Σ(σ) is a direct sum of finitely many

factorial representations of type II. At least one of them is tracial2.
(2) Take σ′ another representation of Σ and ρ′ denotes its induced Γ-represent-

ation. If a subrepresentation of ρ is weakly contained in ρ′ then σ ◦ Ad(g)
is weakly contained in σ′, for some g ∈ Λ (and Ad(g) denotes the automor-
phism of Σ obtained by g conjugation).

Proof. —
(1) In fact we we can give a more precise statement using the induction by

stages principle. Denote by π := IndΛ
Σ(σ), so that ρ is conjugate to the

induced representation of π. Then by Lemma 2.4, we know that π is a
direct sum of finitely many factorial representations of type II1. We will
prove that ρ(Γ)′′ = B(`2(Γ/Λ))⊗π(Λ)′′ and that C∗(ρ(Γ)) contains a non-
zero element x such that (pΛ ⊗ 1)x = x, proving the traceability property.

Denote by H0 the Hilbert space on which π acts. Set I := (Γ/Λ) \ Λ.
Then `2(Γ/Λ)⊗H0 is the direct sum of H1 := δΛ⊗H0 and H2 := `2(I)⊗H0,

2In fact all of them, but we don’t need this fact.
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both of which are Λ-invariant. Denote by π1 and π2 the representations of
Λ obtained this way.

The result will follow exactly as in Proposition 1.1 once we prove that no
sub-representation of π1 is weakly contained in π2. Let us restrict further
the discussion to Σ.

The restriction π1|Σ is the direct sum of finitely many representations of
the form σ ◦ Ad(g) for elements g ∈ Λ. Indeed this follows by the proof of
Lemma 2.4. In particular each such representation is factorial. Note that
Ad(g) permutes the groups Σk, k = 1, . . . , d. It follows that the restriction
of each such representation σ ◦ Ad(g) to Σk is factorial and not weakly
contained in the regular representation for every k = 1, . . . , d.

Claim. No subrepresentation of π1 is weakly contained in π2.
Assume the contrary. Then by restricting to Σ, we find that some Σ-

subrepresentation of π1|Σ is weakly contained in π2|Σ. By Lemma 2.1,
we find that σ ◦ Ad(g) is weakly contained in π2|Σ for some g ∈ Λ. For
simplicity denote by σ′ := σ ◦ Ad(g) and H ′ the Hilbert space on which it
acts.

Denote by Φ : C∗(π2(Σ)) → C∗(σ′(Σ)) the C*-morphism such that
Φ(π2(h)) = π′(h), for all h ∈ Σ. Use Arveson extension theorem to extend
Φ to a ucp map E : B(`2(I)⊗H0)→ B(H ′). For every k, denote by Ik ⊂ I
the set of cosets gΛ ∈ I such that Σk ∩ gΛg−1 is amenable. By Lemma
3.3, we have

⋃d
k=1 Ik = I. Denote by pk ∈ B(`2(I) ⊗ H0) the orthogonal

projection onto `2(Ik) ⊗ H0. Since Ik is Σk-invariant, pk commutes with
π2(Σk). Denote by rk ∈ B(H ′) the support projection of E(pk).

Since
⋃d

k=1 Ik = I, we get
∑

k pk > 1, and thus we may find k such
that E(pk) 6= 0. In this case rk is a non-zero projection invariant under
σ′(Σk). Moreover, the map E restricted to pkB(`2(I) ⊗ H0)pk witnesses
that pkπ2|Σk

weakly contains rkσ
′|Σk

. Since σ′|Σk
is factorial, Lemma 2.1

implies that rkσ
′|Σk

is weakly equivalent to σ′|Σk
. Moreover, our choice of

Ik and pk and Lemma 2.3 imply that pkπ2|Σk
is weakly contained in the

regular representation of Σk. So we arrive at the conclusion that σ′|Σk
is

weakly contained in the regular representation. But we observed that this
was impossible. This contradiction finishes the proof of the claim, and the
rest of (1) follows as in the proof of Proposition 1.1.

(2) Assume that a subrepresentation of ρ is weakly contained in ρ′. By (1), we
know that ρ is the direct sum of finitely many factorial representations of
the form IndΓ

Λ(π0) for some factorial representation π0 of Λ. In fact π0 is a
factorial subrepresentation of π = IndΛ

Σ(σ).
By Lemma 2.1, we deduce that one such factorial summand IndΓ

Λ(π0)
is weakly contained in ρ′. Restricting to Σ we deduce that in particular
π0|Σ is weakly contained in ρ′|Σ. But π0|Σ is a subrepresentation of π|Σ,
which is the direct sum of finitely many factorial representations of the form
σ ◦ Ad(g). So applying again Lemma 2.1, we find that some σ ◦ Ad(g) is
weakly contained in ρ′|Σ.

Now we apply the analysis made in (1) to ρ′|Σ. It is the direct sum of
finitely many representations σ′ ◦Ad(h), for some elements h ∈ Λ, together
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with one representation σ2, which is the restriction to Σ of the representa-
tion on `2(I) ⊗H ′0. The proof of the claim above shows that σ ◦ Ad(g) is
not weakly contained in σ2. By Lemma 2.2, we then deduce that σ ◦Ad(g)
is weakly contained in some σ′ ◦ Ad(h) for some h ∈ Λ, and we get the
desired conclusion. �

Proof of Theorem 1.3. — By Lemma 2.6, we may find an uncountable family πi,
i ∈ I, of factorial representations of type II1 of SL2(Z) which are all amenable and
such that πi is not weakly contained in πj ◦ α for any i 6= j and α ∈ Aut(SL2(Z)).
Since I is uncountable, we may cut it in d copies of itself, I ' Id. So in fact, we may
find uncountably many d-tuples of representations (π1

i , . . . , π
d
i ), i ∈ I, such that πk

i

is not weakly contained in π`
j ◦ α for every (i, k) 6= (j, `), and α ∈ Aut(SL2(Z)).

Each such tuple gives a representation σi of Σ, defined by

σi(g1, . . . , gd) = π1
i (g1)⊗ · · · ⊗ πd

i (gd), for every (g1, . . . , gd) ∈ Σ.

Since the action of Λ on Σ permutes the factors Σi, we find that σi is not weakly
contained in σj ◦Ad(g) for every i 6= j in I and g ∈ Λ.

Moreover, each σi is factorial since σi(Σ)′′ = π1
i (Σ1)′′⊗ · · · ⊗ πd

i (Σd)′′. Likewise,
its restriction to Σk, k = 1, . . . , d, is factorial and amenable (hence not weakly
contained in the regular representation).

We may apply Proposition 3.4 to find in the induced Γ-representation of each σi

a direct summand ρi which is factorial and traceable. The family ρi is uncountable
and none of them is weakly contained in any other. �
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